Matches in SemOpenAlex for { <https://semopenalex.org/work/W2185989726> ?p ?o ?g. }
- W2185989726 abstract "We discuss three problems. Although the problems themselves are distinct, two basic themes underly each of them. First, each problem is either directly, or can be viewed as a random graph problem. Second, all the problems can be solved by using elementary techniques from the probabilistic method. We first discuss the Leader Election problem. In the leader election problem, there are n processors, βn of which are bad (or corrupt), and (1 − β)n of which are good, for some fixed β. For β < 1/3, we present an algorithm which elects a leader from the set of all processors such that, with constant probability, this leader is good, and a 1 − o(1) fraction of the good processors know the election result. Further the algorithm only requires each good processor to send and process a number of bits which is polylogarithmic in n. Next we discuss the chromatic number of a random scaled sector graph. In the random scaled sector graph model, vertices are placed uniformly at random into the [0, 1]2 unit square. Each vertex i is assigned a uniformly at random sector Si, of central angle αi, in a circle of radius ri (with vertex i as the origin). An arc is present from vertex i to any vertex j, if j falls in Si. We study the value of the chromatic number χ(Gn), for random scaled sector graphs with n vertices, where each vertex spans a sector of α degrees with radius rn = lnn n . We prove that for values α π w.h.p. (with high probability), χ( Gn) is Θ(ln n). Finally, we discuss the probability a sparse random graph or hypergraph is connected. While it is exponentially unlikely that a sparse random graph or hypergraph is connected, with probability 1 − o(1) such a graph has a “giant component” that, given its numbers of edges and vertices, is a uniformly distributed connected graph. This simple observation allows us to estimate the number of connected graphs, and more generally the number of connected d-uniform hypergraphs, on n vertices with ((d − 1)−1 + Ω(1))n ≤ m = o(n ln n) edges." @default.
- W2185989726 created "2016-06-24" @default.
- W2185989726 creator A5008033989 @default.
- W2185989726 creator A5063648924 @default.
- W2185989726 date "2005-01-01" @default.
- W2185989726 modified "2023-09-27" @default.
- W2185989726 title "Applications of the probabilistic method to random graphs" @default.
- W2185989726 cites W1499020887 @default.
- W2185989726 cites W1831187082 @default.
- W2185989726 cites W1977759320 @default.
- W2185989726 cites W1980985945 @default.
- W2185989726 cites W1986766834 @default.
- W2185989726 cites W1994659270 @default.
- W2185989726 cites W2003914969 @default.
- W2185989726 cites W2005394933 @default.
- W2185989726 cites W2007331382 @default.
- W2185989726 cites W2007602553 @default.
- W2185989726 cites W2012969946 @default.
- W2185989726 cites W2017232139 @default.
- W2185989726 cites W2025027844 @default.
- W2185989726 cites W2036312115 @default.
- W2185989726 cites W2036356893 @default.
- W2185989726 cites W2039930311 @default.
- W2185989726 cites W2055864659 @default.
- W2185989726 cites W2063553966 @default.
- W2185989726 cites W2063572899 @default.
- W2185989726 cites W2065626264 @default.
- W2185989726 cites W2068345700 @default.
- W2185989726 cites W2068871408 @default.
- W2185989726 cites W2071774989 @default.
- W2185989726 cites W2088627138 @default.
- W2185989726 cites W2092163074 @default.
- W2185989726 cites W2093252122 @default.
- W2185989726 cites W2108347494 @default.
- W2185989726 cites W2153413930 @default.
- W2185989726 cites W2157361753 @default.
- W2185989726 cites W2166841657 @default.
- W2185989726 cites W2167603068 @default.
- W2185989726 cites W2168452204 @default.
- W2185989726 cites W2751862591 @default.
- W2185989726 cites W2905110430 @default.
- W2185989726 cites W3148394380 @default.
- W2185989726 cites W630423399 @default.
- W2185989726 hasPublicationYear "2005" @default.
- W2185989726 type Work @default.
- W2185989726 sameAs 2185989726 @default.
- W2185989726 citedByCount "0" @default.
- W2185989726 crossrefType "journal-article" @default.
- W2185989726 hasAuthorship W2185989726A5008033989 @default.
- W2185989726 hasAuthorship W2185989726A5063648924 @default.
- W2185989726 hasConcept C105795698 @default.
- W2185989726 hasConcept C114614502 @default.
- W2185989726 hasConcept C118615104 @default.
- W2185989726 hasConcept C132525143 @default.
- W2185989726 hasConcept C148364342 @default.
- W2185989726 hasConcept C149530733 @default.
- W2185989726 hasConcept C196956537 @default.
- W2185989726 hasConcept C203776342 @default.
- W2185989726 hasConcept C33923547 @default.
- W2185989726 hasConcept C47458327 @default.
- W2185989726 hasConcept C49937458 @default.
- W2185989726 hasConcept C7356347 @default.
- W2185989726 hasConcept C80899671 @default.
- W2185989726 hasConceptScore W2185989726C105795698 @default.
- W2185989726 hasConceptScore W2185989726C114614502 @default.
- W2185989726 hasConceptScore W2185989726C118615104 @default.
- W2185989726 hasConceptScore W2185989726C132525143 @default.
- W2185989726 hasConceptScore W2185989726C148364342 @default.
- W2185989726 hasConceptScore W2185989726C149530733 @default.
- W2185989726 hasConceptScore W2185989726C196956537 @default.
- W2185989726 hasConceptScore W2185989726C203776342 @default.
- W2185989726 hasConceptScore W2185989726C33923547 @default.
- W2185989726 hasConceptScore W2185989726C47458327 @default.
- W2185989726 hasConceptScore W2185989726C49937458 @default.
- W2185989726 hasConceptScore W2185989726C7356347 @default.
- W2185989726 hasConceptScore W2185989726C80899671 @default.
- W2185989726 hasLocation W21859897261 @default.
- W2185989726 hasOpenAccess W2185989726 @default.
- W2185989726 hasPrimaryLocation W21859897261 @default.
- W2185989726 hasRelatedWork W136172668 @default.
- W2185989726 hasRelatedWork W1822118105 @default.
- W2185989726 hasRelatedWork W1969646010 @default.
- W2185989726 hasRelatedWork W1984128946 @default.
- W2185989726 hasRelatedWork W2011121646 @default.
- W2185989726 hasRelatedWork W2024436752 @default.
- W2185989726 hasRelatedWork W2033897500 @default.
- W2185989726 hasRelatedWork W2036312115 @default.
- W2185989726 hasRelatedWork W2091712762 @default.
- W2185989726 hasRelatedWork W2093432164 @default.
- W2185989726 hasRelatedWork W2109740676 @default.
- W2185989726 hasRelatedWork W2251198337 @default.
- W2185989726 hasRelatedWork W2613250177 @default.
- W2185989726 hasRelatedWork W2676169643 @default.
- W2185989726 hasRelatedWork W2742437282 @default.
- W2185989726 hasRelatedWork W2951204380 @default.
- W2185989726 hasRelatedWork W2951956857 @default.
- W2185989726 hasRelatedWork W2952496295 @default.
- W2185989726 hasRelatedWork W2964417322 @default.
- W2185989726 hasRelatedWork W3098783518 @default.
- W2185989726 isParatext "false" @default.