Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186020640> ?p ?o ?g. }
- W2186020640 abstract "This paper proposes a nonparametric method of estimating average and marginal treatment effects in heterogeneous populations. Building upon an insight of Heckman and Vytlacil, the conventional treatment effects model with heterogeneous effects is shown to imply that outcomes are a nonlinear function of participation probabilities. The degree of this nonlinearity, and hence the shape of the marginal response curve, can be estimated with series estimation methods (e.g., power series or splines). An illustration is provided for the returns to higher education in the U.K, indicating that the average and marginal returns to higher education fall as the proportion of the population with higher education rises, thus providing evidence of heterogeneity in returns. The possible existence of individual heterogeneity in the effect of a treatment on outcomes in a population has been a focus of much work in the causal effects literature. In economics, heterogeneity in the effect of a binary endogenous regressor was introduced in the literature on switching regression models by Quandt (1972), Heckman (1978), and Lee (1979), while in the statistics literature the causal model of potential outcomes of Rubin (1974) also allowed full heterogeneity in treatment effects. This heterogeneity was reformulated as a random coefficient by Heckman and Robb (1985) and by Bjorklund and Moffitt (1987), who also introduced the concept of the marginal treatment effect (termed the ‘marginal gain’ by Bjorklund and Moffitt) in the context of a multivariate-normal switching regression model and showed that it was observationally equivalent to the Lee switching regression model. Imbens and Angrist (1994) showed that the treatment effect in a heterogeneous population across two points in the distribution, termed the Local Average Treatment Effect (LATE), could be nonparametrically estimated with instrumental variables (IV) and Angrist et al. (1996) elaborated and clarified this method. Heckman and Vytlacil (1999, 2005) have clarified the distinctions between the marginal treatment effect (MTE), the LATE, and other treatment effects of interest. In this paper, we build upon a remark by Heckman and Vytlacil (2005, p.691) that the treatment effects model with heterogeneous effects of a binary treatment implies that outcomes are simply a nonlinear function of participation probabilities. A model is set up in this paper which demonstrates that point in a slightly reformulated random coefficients model which makes minimal identifying assumptions for the identification of the nonlinearity. A simple series 2 estimation method is proposed to nonparametrically estimate the shape of the outcomeparticipation-probability relationship, and hence marginal returns to treatment, which can be implemented with widely-available software packages. An empirical illustration is provided for the effect of a binary higher education indicator on earnings in the UK using the data from a study by Blundell et al. (2005). The literature on the effect of education on earnings has seen the largest number of discussions of heterogeneity in the return, a concept discussed in the Woytinsky Lecture of Becker (1975) and in Mincer (1974). Surveys of the empirical literature by Card (1999, 2001) have emphasized the impact of possible heterogeneity in the return on the interpretation of the estimates in that literature (see also Lang (1993)). The large majority of these estimates use only a binary instrument and hence only one piece of the marginal return function can be nonparametrically identified, whereas in this paper a wider portion of the return function is estimated because multiple, multi-valued instruments are used. Carneiro et al. (2003a, 2003b) have also used a wider range of instruments, together with other identifying assumptions, and have been able to estimate the full range of returns to education. Oreopoulos (2006) has examined heterogeneity in returns to education by comparing LATE estimates based on compulsory schooling laws between two countries which have different fractions of the population affected by the laws, which implicitly uses a three-valued instrument rather than a binary one. The next section lays out the model and estimation method, and the subsequent section provides the illustration. A summary appears at the end." @default.
- W2186020640 created "2016-06-24" @default.
- W2186020640 creator A5083047887 @default.
- W2186020640 date "2007-01-01" @default.
- W2186020640 modified "2023-09-27" @default.
- W2186020640 title "Estimating Average and Marginal Treatment Effects in Heterogeneous Populations" @default.
- W2186020640 cites W1483323320 @default.
- W2186020640 cites W1518052575 @default.
- W2186020640 cites W1538443123 @default.
- W2186020640 cites W1538627589 @default.
- W2186020640 cites W1940676734 @default.
- W2186020640 cites W1963925817 @default.
- W2186020640 cites W2002258999 @default.
- W2186020640 cites W2023492742 @default.
- W2186020640 cites W2048261152 @default.
- W2186020640 cites W2132917208 @default.
- W2186020640 cites W2138290169 @default.
- W2186020640 cites W2153797162 @default.
- W2186020640 cites W2162870748 @default.
- W2186020640 cites W3023254902 @default.
- W2186020640 cites W3044348100 @default.
- W2186020640 cites W3121359605 @default.
- W2186020640 cites W3121360637 @default.
- W2186020640 cites W3121556564 @default.
- W2186020640 cites W3122985781 @default.
- W2186020640 cites W3123338624 @default.
- W2186020640 cites W3125156328 @default.
- W2186020640 hasPublicationYear "2007" @default.
- W2186020640 type Work @default.
- W2186020640 sameAs 2186020640 @default.
- W2186020640 citedByCount "0" @default.
- W2186020640 crossrefType "journal-article" @default.
- W2186020640 hasAuthorship W2186020640A5083047887 @default.
- W2186020640 hasConcept C102366305 @default.
- W2186020640 hasConcept C105795698 @default.
- W2186020640 hasConcept C111472728 @default.
- W2186020640 hasConcept C122123141 @default.
- W2186020640 hasConcept C138885662 @default.
- W2186020640 hasConcept C144024400 @default.
- W2186020640 hasConcept C149782125 @default.
- W2186020640 hasConcept C149923435 @default.
- W2186020640 hasConcept C152877465 @default.
- W2186020640 hasConcept C161584116 @default.
- W2186020640 hasConcept C162324750 @default.
- W2186020640 hasConcept C165216359 @default.
- W2186020640 hasConcept C166957645 @default.
- W2186020640 hasConcept C185429906 @default.
- W2186020640 hasConcept C197656967 @default.
- W2186020640 hasConcept C205649164 @default.
- W2186020640 hasConcept C2777402642 @default.
- W2186020640 hasConcept C2779343474 @default.
- W2186020640 hasConcept C2908647359 @default.
- W2186020640 hasConcept C33923547 @default.
- W2186020640 hasConcept C83546350 @default.
- W2186020640 hasConcept C89337504 @default.
- W2186020640 hasConceptScore W2186020640C102366305 @default.
- W2186020640 hasConceptScore W2186020640C105795698 @default.
- W2186020640 hasConceptScore W2186020640C111472728 @default.
- W2186020640 hasConceptScore W2186020640C122123141 @default.
- W2186020640 hasConceptScore W2186020640C138885662 @default.
- W2186020640 hasConceptScore W2186020640C144024400 @default.
- W2186020640 hasConceptScore W2186020640C149782125 @default.
- W2186020640 hasConceptScore W2186020640C149923435 @default.
- W2186020640 hasConceptScore W2186020640C152877465 @default.
- W2186020640 hasConceptScore W2186020640C161584116 @default.
- W2186020640 hasConceptScore W2186020640C162324750 @default.
- W2186020640 hasConceptScore W2186020640C165216359 @default.
- W2186020640 hasConceptScore W2186020640C166957645 @default.
- W2186020640 hasConceptScore W2186020640C185429906 @default.
- W2186020640 hasConceptScore W2186020640C197656967 @default.
- W2186020640 hasConceptScore W2186020640C205649164 @default.
- W2186020640 hasConceptScore W2186020640C2777402642 @default.
- W2186020640 hasConceptScore W2186020640C2779343474 @default.
- W2186020640 hasConceptScore W2186020640C2908647359 @default.
- W2186020640 hasConceptScore W2186020640C33923547 @default.
- W2186020640 hasConceptScore W2186020640C83546350 @default.
- W2186020640 hasConceptScore W2186020640C89337504 @default.
- W2186020640 hasLocation W21860206401 @default.
- W2186020640 hasOpenAccess W2186020640 @default.
- W2186020640 hasPrimaryLocation W21860206401 @default.
- W2186020640 hasRelatedWork W1581547213 @default.
- W2186020640 hasRelatedWork W1978442790 @default.
- W2186020640 hasRelatedWork W1990518057 @default.
- W2186020640 hasRelatedWork W2004877180 @default.
- W2186020640 hasRelatedWork W2054858398 @default.
- W2186020640 hasRelatedWork W2108039374 @default.
- W2186020640 hasRelatedWork W2267046751 @default.
- W2186020640 hasRelatedWork W2511881993 @default.
- W2186020640 hasRelatedWork W2554051696 @default.
- W2186020640 hasRelatedWork W2589718177 @default.
- W2186020640 hasRelatedWork W3091981017 @default.
- W2186020640 hasRelatedWork W3097297606 @default.
- W2186020640 hasRelatedWork W3121805422 @default.
- W2186020640 hasRelatedWork W3122047753 @default.
- W2186020640 hasRelatedWork W3123321993 @default.
- W2186020640 hasRelatedWork W3123671866 @default.
- W2186020640 hasRelatedWork W3125656997 @default.
- W2186020640 hasRelatedWork W3125690399 @default.
- W2186020640 hasRelatedWork W3162980157 @default.
- W2186020640 hasRelatedWork W1963092519 @default.