Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186137654> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2186137654 endingPage "225" @default.
- W2186137654 startingPage "221" @default.
- W2186137654 abstract "This article presents a neural network-based process for automatic classification of magnetic resonance images (MRI) of the brain in two categories of benign, and malignant. The proposed method consists of five following stages; i.e., preprocessing, connected component labeling (CCL), fuzzy connectedness segmentation, feature extraction using DWT and classification using RBF and SVM respectively. Preprocessing involves removing low-frequency surroundings noise, normalize the intensity of the individual particles images, remove reflections, and masking portions of images. Anisotropic filter is used to remove the background noise and thus preserving the edge points in the image. In the third stage, once all groups dogged, each pixel is labeled according to the element to which it is assigned to. In the third stage, the fuzzy Connectedness segmentation is used for partitioning the image into meaningful regions. have been In the fourth stage, the obtained feature connected to MRI images using the discrete wavelet transform (DWT).In the classification stage, the RBF kernel and SVM is used to classify the subjects to normal or abnormal (benign, malignant) and Level set method is used for automatic finding and segmentation of Meningioma and glioma tumor. The proposed technique gives high-quality results for brain tissue detection and is more robust and efficient compared with other recent works." @default.
- W2186137654 created "2016-06-24" @default.
- W2186137654 creator A5043482830 @default.
- W2186137654 creator A5057208366 @default.
- W2186137654 date "2013-01-01" @default.
- W2186137654 modified "2023-09-23" @default.
- W2186137654 title "Automatic Brain Tumor Detection in MR Images using Neural Network Based Classification" @default.
- W2186137654 cites W1622620102 @default.
- W2186137654 cites W2075710390 @default.
- W2186137654 cites W2113159738 @default.
- W2186137654 cites W2123059435 @default.
- W2186137654 cites W2126768332 @default.
- W2186137654 cites W2159098484 @default.
- W2186137654 cites W2160279214 @default.
- W2186137654 cites W2593777607 @default.
- W2186137654 hasPublicationYear "2013" @default.
- W2186137654 type Work @default.
- W2186137654 sameAs 2186137654 @default.
- W2186137654 citedByCount "2" @default.
- W2186137654 countsByYear W21861376542015 @default.
- W2186137654 countsByYear W21861376542016 @default.
- W2186137654 crossrefType "journal-article" @default.
- W2186137654 hasAuthorship W2186137654A5043482830 @default.
- W2186137654 hasAuthorship W2186137654A5057208366 @default.
- W2186137654 hasConcept C115961682 @default.
- W2186137654 hasConcept C12267149 @default.
- W2186137654 hasConcept C153180895 @default.
- W2186137654 hasConcept C154945302 @default.
- W2186137654 hasConcept C196216189 @default.
- W2186137654 hasConcept C31972630 @default.
- W2186137654 hasConcept C34736171 @default.
- W2186137654 hasConcept C41008148 @default.
- W2186137654 hasConcept C46286280 @default.
- W2186137654 hasConcept C47432892 @default.
- W2186137654 hasConcept C50644808 @default.
- W2186137654 hasConcept C52622490 @default.
- W2186137654 hasConcept C89600930 @default.
- W2186137654 hasConcept C99498987 @default.
- W2186137654 hasConceptScore W2186137654C115961682 @default.
- W2186137654 hasConceptScore W2186137654C12267149 @default.
- W2186137654 hasConceptScore W2186137654C153180895 @default.
- W2186137654 hasConceptScore W2186137654C154945302 @default.
- W2186137654 hasConceptScore W2186137654C196216189 @default.
- W2186137654 hasConceptScore W2186137654C31972630 @default.
- W2186137654 hasConceptScore W2186137654C34736171 @default.
- W2186137654 hasConceptScore W2186137654C41008148 @default.
- W2186137654 hasConceptScore W2186137654C46286280 @default.
- W2186137654 hasConceptScore W2186137654C47432892 @default.
- W2186137654 hasConceptScore W2186137654C50644808 @default.
- W2186137654 hasConceptScore W2186137654C52622490 @default.
- W2186137654 hasConceptScore W2186137654C89600930 @default.
- W2186137654 hasConceptScore W2186137654C99498987 @default.
- W2186137654 hasIssue "6" @default.
- W2186137654 hasLocation W21861376541 @default.
- W2186137654 hasOpenAccess W2186137654 @default.
- W2186137654 hasPrimaryLocation W21861376541 @default.
- W2186137654 hasRelatedWork W2063136119 @default.
- W2186137654 hasRelatedWork W2147364566 @default.
- W2186137654 hasRelatedWork W2267794488 @default.
- W2186137654 hasRelatedWork W2547837122 @default.
- W2186137654 hasRelatedWork W2558212897 @default.
- W2186137654 hasRelatedWork W2573077803 @default.
- W2186137654 hasRelatedWork W2610758556 @default.
- W2186137654 hasRelatedWork W2795514222 @default.
- W2186137654 hasRelatedWork W2892159381 @default.
- W2186137654 hasRelatedWork W2897501303 @default.
- W2186137654 hasRelatedWork W2900497113 @default.
- W2186137654 hasRelatedWork W2922222329 @default.
- W2186137654 hasRelatedWork W2974409310 @default.
- W2186137654 hasRelatedWork W3020860518 @default.
- W2186137654 hasRelatedWork W3159261638 @default.
- W2186137654 hasRelatedWork W3200494738 @default.
- W2186137654 hasRelatedWork W3204691686 @default.
- W2186137654 hasRelatedWork W577916633 @default.
- W2186137654 hasRelatedWork W2183632325 @default.
- W2186137654 hasRelatedWork W2593777607 @default.
- W2186137654 hasVolume "5" @default.
- W2186137654 isParatext "false" @default.
- W2186137654 isRetracted "false" @default.
- W2186137654 magId "2186137654" @default.
- W2186137654 workType "article" @default.