Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186165110> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2186165110 abstract "Based on data mining of outliers of time series, current studies have developed many methods, but there exist certain disadvantages for each method. This paper developed the method of mining outliers of time series based on linear programming model, verified high efficiency through an actual case and make up for the shortcoming of other methods. At present, in many scientific fields have accumulated large amounts of data. Data often contains some unknown information. In such circumstances gradually developed a new discipline that is data mining. the data mining has some data with time obviously. this is the time series data mining. In time series data mining work often people ignore the abnormal data. However, some abnormal data is able to respond to some unexpected situations. Especially in the electronic commerce environment. the time series data mining technology can help the electronic commerce enterprise knowledge from data mining, potential rules. Then these findings shown by visualization method. It can help enterprises to deepen the understanding of knowledge acquisition. The optimization of enterprise decision management, customer relationship management, collaborative business management, marketing management, website maintenance management and risk control management. confirm the target market. the realization of personalized marketing, greater competitive advantage. Method of time series outlier data mining has many. Such as: The statistical method, distance based method, density based method, biological method, based on model method etc. But each method all have different limitations. in this paper based on time series outlier data mining is a mining method of linear programming based on time series outlier data. And a good effect is obtained by the empirical analysis of the 2011 stock data. Hope this method can increase the accuracy of time series the anomaly detection." @default.
- W2186165110 created "2016-06-24" @default.
- W2186165110 creator A5085787817 @default.
- W2186165110 date "2014-08-24" @default.
- W2186165110 modified "2023-09-26" @default.
- W2186165110 title "Application Research on time series data mining outliers in linear programming" @default.
- W2186165110 cites W1552339598 @default.
- W2186165110 cites W2153028052 @default.
- W2186165110 doi "https://doi.org/10.14257/astl.2014.53.90" @default.
- W2186165110 hasPublicationYear "2014" @default.
- W2186165110 type Work @default.
- W2186165110 sameAs 2186165110 @default.
- W2186165110 citedByCount "0" @default.
- W2186165110 crossrefType "proceedings-article" @default.
- W2186165110 hasAuthorship W2186165110A5085787817 @default.
- W2186165110 hasConcept C119857082 @default.
- W2186165110 hasConcept C124101348 @default.
- W2186165110 hasConcept C127313418 @default.
- W2186165110 hasConcept C143724316 @default.
- W2186165110 hasConcept C151406439 @default.
- W2186165110 hasConcept C151730666 @default.
- W2186165110 hasConcept C154945302 @default.
- W2186165110 hasConcept C41008148 @default.
- W2186165110 hasConcept C79337645 @default.
- W2186165110 hasConceptScore W2186165110C119857082 @default.
- W2186165110 hasConceptScore W2186165110C124101348 @default.
- W2186165110 hasConceptScore W2186165110C127313418 @default.
- W2186165110 hasConceptScore W2186165110C143724316 @default.
- W2186165110 hasConceptScore W2186165110C151406439 @default.
- W2186165110 hasConceptScore W2186165110C151730666 @default.
- W2186165110 hasConceptScore W2186165110C154945302 @default.
- W2186165110 hasConceptScore W2186165110C41008148 @default.
- W2186165110 hasConceptScore W2186165110C79337645 @default.
- W2186165110 hasLocation W21861651101 @default.
- W2186165110 hasOpenAccess W2186165110 @default.
- W2186165110 hasPrimaryLocation W21861651101 @default.
- W2186165110 hasRelatedWork W1757941741 @default.
- W2186165110 hasRelatedWork W2009388632 @default.
- W2186165110 hasRelatedWork W2038045252 @default.
- W2186165110 hasRelatedWork W2238926016 @default.
- W2186165110 hasRelatedWork W2350561768 @default.
- W2186165110 hasRelatedWork W2741652912 @default.
- W2186165110 hasRelatedWork W3121443985 @default.
- W2186165110 hasRelatedWork W3214311951 @default.
- W2186165110 hasRelatedWork W4220753934 @default.
- W2186165110 hasRelatedWork W86208002 @default.
- W2186165110 isParatext "false" @default.
- W2186165110 isRetracted "false" @default.
- W2186165110 magId "2186165110" @default.
- W2186165110 workType "article" @default.