Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186179986> ?p ?o ?g. }
- W2186179986 abstract "The main computational bottleneck in various sampling based and local-search based inference algorithms for Markov logic networks (e.g., Gibbs sampling, MC-SAT, MaxWalksat, etc.) is computing the number of groundings of a first-order formula that are true given a truth assignment to all of its ground atoms. We reduce this problem to the problem of counting the number of solutions of a constraint satisfaction problem (CSP) and show that during their execution, both sampling based and local-search based algorithms repeatedly solve dynamic versions of this counting problem. Deriving from the vast amount of literature on CSPs and graphical models, we propose an exact junction-tree based algorithm for computing the number of solutions of the dynamic CSP, analyze its properties, and show how it can be used to improve the computational complexity of Gibbs sampling and MaxWalksat. Empirical tests on a variety of benchmarks clearly show that our new approach is several orders of magnitude more scalable than existing approaches." @default.
- W2186179986 created "2016-06-24" @default.
- W2186179986 creator A5023589965 @default.
- W2186179986 creator A5038455119 @default.
- W2186179986 creator A5086262717 @default.
- W2186179986 date "2015-03-04" @default.
- W2186179986 modified "2023-10-16" @default.
- W2186179986 title "Just Count the Satisfied Groundings: Scalable Local-Search and Sampling Based Inference in MLNs" @default.
- W2186179986 cites W121830907 @default.
- W2186179986 cites W1585529040 @default.
- W2186179986 cites W1593793857 @default.
- W2186179986 cites W1631001681 @default.
- W2186179986 cites W1823181550 @default.
- W2186179986 cites W1860880244 @default.
- W2186179986 cites W1989783863 @default.
- W2186179986 cites W1997945384 @default.
- W2186179986 cites W2017127020 @default.
- W2186179986 cites W2020999234 @default.
- W2186179986 cites W2107272354 @default.
- W2186179986 cites W2126111067 @default.
- W2186179986 cites W2133933452 @default.
- W2186179986 cites W2135209143 @default.
- W2186179986 cites W2149018851 @default.
- W2186179986 cites W2153074847 @default.
- W2186179986 cites W2154055561 @default.
- W2186179986 cites W2169415915 @default.
- W2186179986 cites W2169438188 @default.
- W2186179986 cites W2404266688 @default.
- W2186179986 cites W2503079136 @default.
- W2186179986 cites W2605617669 @default.
- W2186179986 cites W2912526555 @default.
- W2186179986 cites W2963548447 @default.
- W2186179986 cites W3098821697 @default.
- W2186179986 cites W73939759 @default.
- W2186179986 doi "https://doi.org/10.1609/aaai.v29i1.9676" @default.
- W2186179986 hasPublicationYear "2015" @default.
- W2186179986 type Work @default.
- W2186179986 sameAs 2186179986 @default.
- W2186179986 citedByCount "8" @default.
- W2186179986 countsByYear W21861799862016 @default.
- W2186179986 countsByYear W21861799862018 @default.
- W2186179986 countsByYear W21861799862021 @default.
- W2186179986 crossrefType "journal-article" @default.
- W2186179986 hasAuthorship W2186179986A5023589965 @default.
- W2186179986 hasAuthorship W2186179986A5038455119 @default.
- W2186179986 hasAuthorship W2186179986A5086262717 @default.
- W2186179986 hasBestOaLocation W21861799861 @default.
- W2186179986 hasConcept C106131492 @default.
- W2186179986 hasConcept C107673813 @default.
- W2186179986 hasConcept C113174947 @default.
- W2186179986 hasConcept C11413529 @default.
- W2186179986 hasConcept C119857082 @default.
- W2186179986 hasConcept C125583679 @default.
- W2186179986 hasConcept C126255220 @default.
- W2186179986 hasConcept C134306372 @default.
- W2186179986 hasConcept C140745168 @default.
- W2186179986 hasConcept C140779682 @default.
- W2186179986 hasConcept C149635348 @default.
- W2186179986 hasConcept C154945302 @default.
- W2186179986 hasConcept C155846161 @default.
- W2186179986 hasConcept C158424031 @default.
- W2186179986 hasConcept C179799912 @default.
- W2186179986 hasConcept C199622910 @default.
- W2186179986 hasConcept C207024777 @default.
- W2186179986 hasConcept C2524010 @default.
- W2186179986 hasConcept C2776036281 @default.
- W2186179986 hasConcept C2776214188 @default.
- W2186179986 hasConcept C2780513914 @default.
- W2186179986 hasConcept C31972630 @default.
- W2186179986 hasConcept C33923547 @default.
- W2186179986 hasConcept C41008148 @default.
- W2186179986 hasConcept C44616089 @default.
- W2186179986 hasConcept C48044578 @default.
- W2186179986 hasConcept C49937458 @default.
- W2186179986 hasConcept C77088390 @default.
- W2186179986 hasConcept C80444323 @default.
- W2186179986 hasConcept C98763669 @default.
- W2186179986 hasConceptScore W2186179986C106131492 @default.
- W2186179986 hasConceptScore W2186179986C107673813 @default.
- W2186179986 hasConceptScore W2186179986C113174947 @default.
- W2186179986 hasConceptScore W2186179986C11413529 @default.
- W2186179986 hasConceptScore W2186179986C119857082 @default.
- W2186179986 hasConceptScore W2186179986C125583679 @default.
- W2186179986 hasConceptScore W2186179986C126255220 @default.
- W2186179986 hasConceptScore W2186179986C134306372 @default.
- W2186179986 hasConceptScore W2186179986C140745168 @default.
- W2186179986 hasConceptScore W2186179986C140779682 @default.
- W2186179986 hasConceptScore W2186179986C149635348 @default.
- W2186179986 hasConceptScore W2186179986C154945302 @default.
- W2186179986 hasConceptScore W2186179986C155846161 @default.
- W2186179986 hasConceptScore W2186179986C158424031 @default.
- W2186179986 hasConceptScore W2186179986C179799912 @default.
- W2186179986 hasConceptScore W2186179986C199622910 @default.
- W2186179986 hasConceptScore W2186179986C207024777 @default.
- W2186179986 hasConceptScore W2186179986C2524010 @default.
- W2186179986 hasConceptScore W2186179986C2776036281 @default.
- W2186179986 hasConceptScore W2186179986C2776214188 @default.
- W2186179986 hasConceptScore W2186179986C2780513914 @default.
- W2186179986 hasConceptScore W2186179986C31972630 @default.
- W2186179986 hasConceptScore W2186179986C33923547 @default.