Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186263511> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2186263511 abstract "Search engine is pedestal machine on two-dimensional logic and possibility hypothesis which are short of concept based i.e. fact based existent human understanding and advanced way of thinking and precision to formulate answers.QA (Question answering) system is hybrid machine with analysis ability to fetch data from diverse knowledge source assorted format and formulate a answer to user search query. Research domain in advanced Information retrieval is machine to prospect a information seeking engine (search engine advancement).formulate precise answer to user search question is aspire of QA system .current search engines are keyword base with sort of semantic incorporation (semantic search in Google) Enhancement in search engines is three tier, user question understanding (user model, context, intent), text/data-mining analytics with machine learning (Support vector machine(SVM),Artificial neural networks(ANN)),and adha Rank (bings algorithm) to formulate trainable machine to reduce search space and time.QA system is a semantic concept based framework which identifies the nucleus keywords and phrases incorporating meaning i.e. sense of word to phrase ,sense of phrase to sentence ,to corpus which abolish the disambiguation of NL(natural language) in search engines. A prototype design of Answer engine is proposed that performs concept map of user question .the semantic concept framework enhances the ability of reckoning in Answering system. GUI interface performs mapping of user question in concept group (ontology class i.e. Spatial ontology, domain ontology, task ontology, universal ontology).text analytics formulates extraction of Answer term, phrases from corpus or knowledge dataset (unstructured & structured) using n-gram. Machine learning algorithms facilitate intelligence in search corpus. Ranking algorithm presents information on relevance precision mapped to user search intent. AdaRank repetitively build ‘frail rankers’ on the foundation of re-weighted training data and lastly linearly join the feeble rankers for making ranking forecast. The training process of AdaRank is exactly enhancing the performance measure used. AdaRank significantly optimizes the base technologies BM25, Ranking SVM, and Rank Boost.QA system are future of search engine, expert systems, and rule based systems. Current paradigm information processing machines to intelligent information machine which perform time variant search on large dataset with higher precision to question. This paper a search analysis has been carried out on 20 research article on Advance IR technologies. The search analysis present in detailed study on three methodologies (question understanding, text analytics, machine learning and ranking algorithm) when optimized invent enhanced search machine, QA system. Search paper concludes that intelligence in information processing has evolved search engines, rule based machines, expert systems to hybrid reasoning machines-QA Systems." @default.
- W2186263511 created "2016-06-24" @default.
- W2186263511 creator A5022491318 @default.
- W2186263511 creator A5033594577 @default.
- W2186263511 creator A5079081280 @default.
- W2186263511 date "2014-01-01" @default.
- W2186263511 modified "2023-09-27" @default.
- W2186263511 title "Search Engines to QAS: Explorative Analysis" @default.
- W2186263511 cites W1561386135 @default.
- W2186263511 cites W1988059434 @default.
- W2186263511 cites W1997585218 @default.
- W2186263511 cites W2017338566 @default.
- W2186263511 cites W2099908705 @default.
- W2186263511 cites W2106256275 @default.
- W2186263511 cites W2118026896 @default.
- W2186263511 cites W2152866159 @default.
- W2186263511 cites W2164794284 @default.
- W2186263511 cites W2167435923 @default.
- W2186263511 cites W2626014741 @default.
- W2186263511 cites W2626199433 @default.
- W2186263511 cites W3159064672 @default.
- W2186263511 cites W981617252 @default.
- W2186263511 hasPublicationYear "2014" @default.
- W2186263511 type Work @default.
- W2186263511 sameAs 2186263511 @default.
- W2186263511 citedByCount "6" @default.
- W2186263511 countsByYear W21862635112016 @default.
- W2186263511 crossrefType "journal-article" @default.
- W2186263511 hasAuthorship W2186263511A5022491318 @default.
- W2186263511 hasAuthorship W2186263511A5033594577 @default.
- W2186263511 hasAuthorship W2186263511A5079081280 @default.
- W2186263511 hasConcept C111472728 @default.
- W2186263511 hasConcept C138885662 @default.
- W2186263511 hasConcept C14838553 @default.
- W2186263511 hasConcept C154945302 @default.
- W2186263511 hasConcept C164120249 @default.
- W2186263511 hasConcept C166423231 @default.
- W2186263511 hasConcept C204321447 @default.
- W2186263511 hasConcept C23123220 @default.
- W2186263511 hasConcept C25810664 @default.
- W2186263511 hasConcept C37202355 @default.
- W2186263511 hasConcept C41008148 @default.
- W2186263511 hasConcept C44291984 @default.
- W2186263511 hasConcept C97854310 @default.
- W2186263511 hasConceptScore W2186263511C111472728 @default.
- W2186263511 hasConceptScore W2186263511C138885662 @default.
- W2186263511 hasConceptScore W2186263511C14838553 @default.
- W2186263511 hasConceptScore W2186263511C154945302 @default.
- W2186263511 hasConceptScore W2186263511C164120249 @default.
- W2186263511 hasConceptScore W2186263511C166423231 @default.
- W2186263511 hasConceptScore W2186263511C204321447 @default.
- W2186263511 hasConceptScore W2186263511C23123220 @default.
- W2186263511 hasConceptScore W2186263511C25810664 @default.
- W2186263511 hasConceptScore W2186263511C37202355 @default.
- W2186263511 hasConceptScore W2186263511C41008148 @default.
- W2186263511 hasConceptScore W2186263511C44291984 @default.
- W2186263511 hasConceptScore W2186263511C97854310 @default.
- W2186263511 hasLocation W21862635111 @default.
- W2186263511 hasOpenAccess W2186263511 @default.
- W2186263511 hasPrimaryLocation W21862635111 @default.
- W2186263511 hasRelatedWork W1483138003 @default.
- W2186263511 hasRelatedWork W1518851315 @default.
- W2186263511 hasRelatedWork W1522230534 @default.
- W2186263511 hasRelatedWork W1535191839 @default.
- W2186263511 hasRelatedWork W1561536714 @default.
- W2186263511 hasRelatedWork W1586606872 @default.
- W2186263511 hasRelatedWork W2062593675 @default.
- W2186263511 hasRelatedWork W2088407996 @default.
- W2186263511 hasRelatedWork W2108650858 @default.
- W2186263511 hasRelatedWork W2137369723 @default.
- W2186263511 hasRelatedWork W2139747504 @default.
- W2186263511 hasRelatedWork W2195292339 @default.
- W2186263511 hasRelatedWork W2359715135 @default.
- W2186263511 hasRelatedWork W2965652445 @default.
- W2186263511 hasRelatedWork W2974030101 @default.
- W2186263511 hasRelatedWork W3022131925 @default.
- W2186263511 hasRelatedWork W3185623117 @default.
- W2186263511 hasRelatedWork W1574044143 @default.
- W2186263511 hasRelatedWork W2189162393 @default.
- W2186263511 hasRelatedWork W2278051412 @default.
- W2186263511 isParatext "false" @default.
- W2186263511 isRetracted "false" @default.
- W2186263511 magId "2186263511" @default.
- W2186263511 workType "article" @default.