Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186356962> ?p ?o ?g. }
- W2186356962 endingPage "137" @default.
- W2186356962 startingPage "109" @default.
- W2186356962 abstract "Free AccessAboutSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked InEmail Go to SectionFree Access HomeINFORMS TutORials in Operations ResearchBridging Data and Decisions Clearing the Jungle of Stochastic OptimizationWarren B. PowellWarren B. PowellPublished Online:27 Oct 2014https://doi.org/10.1287/educ.2014.0128Abstract Whereas deterministic optimization enjoys an almost universally accepted canonical form, stochastic optimization is a jungle of competing notational systems and algorithmic strategies. This is especially problematic in the context of sequential (multistage) stochastic optimization problems, which is the focus of our presentation. In this article, we place a variety of competing strategies into a common framework, which makes it easier to see the close relationship between communities such as stochastic programming, (approximate) dynamic programming, simulation, and stochastic search. What have previously been viewed as competing approaches (e.g., simulation versus optimization, stochastic programming versus dynamic programming) can be reduced to four fundamental classes of policies that are evaluated in a simulation-based setting we call the base model. The result is a single coherent framework that encompasses all of these methods, which can often be combined to create powerful hybrid policies to address complex problems. This publication has no references to display. Your Access Options Login Options INFORMS Member Login Nonmember Login Purchase Options Save for later Item saved, go to cart Tutorials in OR, TutorialsNew $20.00 Add to cart Tutorials in OR, TutorialsNew Checkout Other Options Token Access Insert token number Claim access using a token Restore guest access Applies for purchases made as a guest Previous Back to Top Next FiguresReferencesRelatedInformationCited byNo Longer in the Dark: Utilizing Imperfect Advance Load Information for Single-Truck OperatorsMehdi Najafi, Hossein Zolfagharinia25 March 2022 | Transportation Science, Vol. 56, No. 6Multi-Period Workload Balancing in Last-Mile Urban DeliveryYang Wang, Lei Zhao, Martin Savelsbergh, Shengnan Wu17 March 2022 | Transportation Science, Vol. 56, No. 5A Discrete Simulation-Based Optimization Algorithm for the Design of Highly Responsive Last-Mile Distribution NetworksAndré Snoeck, Matthias Winkenbach30 November 2021 | Transportation Science, Vol. 56, No. 1Easy Affine Markov Decision ProcessesJie Ning, Matthew J. Sobel25 October 2019 | Operations Research, Vol. 67, No. 6A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing StrategyShalinda Adikari, Kaushik Dutta21 January 2019 | INFORMS Journal on Computing, Vol. 31, No. 1A Unified Framework for Optimization Under UncertaintyWarren B. Powell4 November 2016 Bridging Data and DecisionsSeptember 2014 Article Information Metrics Information Published Online:October 27, 2014 Copyright © 2014, INFORMSCite asWarren B. Powell (2014) Clearing the Jungle of Stochastic Optimization. INFORMS TutORials in Operations Research null(null):109-137. https://doi.org/10.1287/educ.2014.0128 Keywordsstochastic optimizationstochastic programmingapproximate dynamic programmingreinforcement learningPDF download" @default.
- W2186356962 created "2016-06-24" @default.
- W2186356962 creator A5054833334 @default.
- W2186356962 date "2014-09-01" @default.
- W2186356962 modified "2023-10-12" @default.
- W2186356962 title "Clearing the Jungle of Stochastic Optimization" @default.
- W2186356962 cites W1490324987 @default.
- W2186356962 cites W1494277681 @default.
- W2186356962 cites W1541527977 @default.
- W2186356962 cites W1554944419 @default.
- W2186356962 cites W1569990960 @default.
- W2186356962 cites W1573503290 @default.
- W2186356962 cites W1579824288 @default.
- W2186356962 cites W1601081659 @default.
- W2186356962 cites W1606832378 @default.
- W2186356962 cites W1754068669 @default.
- W2186356962 cites W1965055282 @default.
- W2186356962 cites W1965328823 @default.
- W2186356962 cites W1969007958 @default.
- W2186356962 cites W1977785256 @default.
- W2186356962 cites W1983916623 @default.
- W2186356962 cites W1992662887 @default.
- W2186356962 cites W1993377828 @default.
- W2186356962 cites W1996934332 @default.
- W2186356962 cites W2000953623 @default.
- W2186356962 cites W2001009060 @default.
- W2186356962 cites W2004808074 @default.
- W2186356962 cites W2008283994 @default.
- W2186356962 cites W2008772536 @default.
- W2186356962 cites W2018682725 @default.
- W2186356962 cites W2019710194 @default.
- W2186356962 cites W2030720281 @default.
- W2186356962 cites W203276351 @default.
- W2186356962 cites W2040358553 @default.
- W2186356962 cites W2041774785 @default.
- W2186356962 cites W2046752469 @default.
- W2186356962 cites W2057944933 @default.
- W2186356962 cites W2060013459 @default.
- W2186356962 cites W2060915126 @default.
- W2186356962 cites W2064073681 @default.
- W2186356962 cites W2064076655 @default.
- W2186356962 cites W2065817716 @default.
- W2186356962 cites W2069804366 @default.
- W2186356962 cites W2076635261 @default.
- W2186356962 cites W207991364 @default.
- W2186356962 cites W2084484017 @default.
- W2186356962 cites W2087480365 @default.
- W2186356962 cites W2087919345 @default.
- W2186356962 cites W2088363515 @default.
- W2186356962 cites W2095654559 @default.
- W2186356962 cites W2098432798 @default.
- W2186356962 cites W2100857832 @default.
- W2186356962 cites W2103820639 @default.
- W2186356962 cites W2108434419 @default.
- W2186356962 cites W2110674418 @default.
- W2186356962 cites W2115001337 @default.
- W2186356962 cites W2121875288 @default.
- W2186356962 cites W2123736449 @default.
- W2186356962 cites W2127331687 @default.
- W2186356962 cites W2130005627 @default.
- W2186356962 cites W2135243999 @default.
- W2186356962 cites W2136908412 @default.
- W2186356962 cites W2142858180 @default.
- W2186356962 cites W2149052950 @default.
- W2186356962 cites W2154716504 @default.
- W2186356962 cites W2158323882 @default.
- W2186356962 cites W2164768462 @default.
- W2186356962 cites W2166508157 @default.
- W2186356962 cites W2304410975 @default.
- W2186356962 cites W2317065341 @default.
- W2186356962 cites W2317700292 @default.
- W2186356962 cites W2334782222 @default.
- W2186356962 cites W2341171179 @default.
- W2186356962 cites W2736278702 @default.
- W2186356962 cites W2750200343 @default.
- W2186356962 cites W2798534591 @default.
- W2186356962 cites W3102923851 @default.
- W2186356962 cites W3121926921 @default.
- W2186356962 cites W3150912016 @default.
- W2186356962 cites W3193283090 @default.
- W2186356962 cites W570389583 @default.
- W2186356962 doi "https://doi.org/10.1287/educ.2014.0128" @default.
- W2186356962 hasPublicationYear "2014" @default.
- W2186356962 type Work @default.
- W2186356962 sameAs 2186356962 @default.
- W2186356962 citedByCount "48" @default.
- W2186356962 countsByYear W21863569622014 @default.
- W2186356962 countsByYear W21863569622015 @default.
- W2186356962 countsByYear W21863569622016 @default.
- W2186356962 countsByYear W21863569622017 @default.
- W2186356962 countsByYear W21863569622018 @default.
- W2186356962 countsByYear W21863569622019 @default.
- W2186356962 countsByYear W21863569622020 @default.
- W2186356962 countsByYear W21863569622021 @default.
- W2186356962 countsByYear W21863569622022 @default.
- W2186356962 countsByYear W21863569622023 @default.
- W2186356962 crossrefType "book-chapter" @default.
- W2186356962 hasAuthorship W2186356962A5054833334 @default.