Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186402307> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2186402307 abstract "Since the introduction of Airborne Laser Scanning (ALS) know as an alternative aerial-based data acquisition tool, the requirement of the 3D model reconstruction in both urban and power-line scenes has dramatically increased. Especially, electric utilities including power-line and tower are crucial infrastructures that require considerable resources to be monitored and managed effectively. For the establishment of the power-line scene inventory, its geospatial information such as positions and attributes of power-line networks should be accurately recorded. This paper presents a 3D classification method to classify power-line scene where a few structures including trees, transmission lines and pylons would be vertically overlapped. The research proposes two different scales of feature extractions from a volumetric space and its embedded points for taking advantages of full 3D analysis against conventional 2D pixel-based analysis. With targeted object instances including ground, vegetation, power-line, pylon and building, 21 features to characterize each class are extracted from different segment scale. The Random Forest is investigated as an ensemble decision classifier to classify power-line scenes with extracted features. An ultimate goal of the research is to apply a knowledge-based classifier trained with small training sample to large-scale unlabelled power-line corridors. In order to achieve this goal, this paper conducts a sensitivity analysis in terms of feature extraction scale, feature importance and class distribution over test datasets with or without the separation from training data. Experiments suggest that an optimized classification performance of 96% success rate by Random Forest can be achieved with point-based feature extraction and data sets with relatively equal distribution of the training data." @default.
- W2186402307 created "2016-06-24" @default.
- W2186402307 creator A5036846355 @default.
- W2186402307 creator A5043188572 @default.
- W2186402307 date "2010-01-01" @default.
- W2186402307 modified "2023-09-27" @default.
- W2186402307 title "3D CLASSIFICATION OF POWER-LINE SCENE FROM AIRBORNE LASER SCANNING DATA USING RANDOM FORESTS" @default.
- W2186402307 cites W1241110089 @default.
- W2186402307 cites W1490590450 @default.
- W2186402307 cites W1570448133 @default.
- W2186402307 cites W176721219 @default.
- W2186402307 cites W2006305514 @default.
- W2186402307 cites W2030359906 @default.
- W2186402307 cites W2052735510 @default.
- W2186402307 cites W2129725504 @default.
- W2186402307 cites W2137046698 @default.
- W2186402307 cites W2146534786 @default.
- W2186402307 cites W2156067790 @default.
- W2186402307 cites W2534919461 @default.
- W2186402307 cites W2911964244 @default.
- W2186402307 hasPublicationYear "2010" @default.
- W2186402307 type Work @default.
- W2186402307 sameAs 2186402307 @default.
- W2186402307 citedByCount "10" @default.
- W2186402307 countsByYear W21864023072014 @default.
- W2186402307 countsByYear W21864023072016 @default.
- W2186402307 countsByYear W21864023072017 @default.
- W2186402307 countsByYear W21864023072018 @default.
- W2186402307 crossrefType "journal-article" @default.
- W2186402307 hasAuthorship W2186402307A5036846355 @default.
- W2186402307 hasAuthorship W2186402307A5043188572 @default.
- W2186402307 hasConcept C119599485 @default.
- W2186402307 hasConcept C124101348 @default.
- W2186402307 hasConcept C127413603 @default.
- W2186402307 hasConcept C140311924 @default.
- W2186402307 hasConcept C153180895 @default.
- W2186402307 hasConcept C154945302 @default.
- W2186402307 hasConcept C169258074 @default.
- W2186402307 hasConcept C205649164 @default.
- W2186402307 hasConcept C41008148 @default.
- W2186402307 hasConcept C62649853 @default.
- W2186402307 hasConcept C84525736 @default.
- W2186402307 hasConcept C95623464 @default.
- W2186402307 hasConceptScore W2186402307C119599485 @default.
- W2186402307 hasConceptScore W2186402307C124101348 @default.
- W2186402307 hasConceptScore W2186402307C127413603 @default.
- W2186402307 hasConceptScore W2186402307C140311924 @default.
- W2186402307 hasConceptScore W2186402307C153180895 @default.
- W2186402307 hasConceptScore W2186402307C154945302 @default.
- W2186402307 hasConceptScore W2186402307C169258074 @default.
- W2186402307 hasConceptScore W2186402307C205649164 @default.
- W2186402307 hasConceptScore W2186402307C41008148 @default.
- W2186402307 hasConceptScore W2186402307C62649853 @default.
- W2186402307 hasConceptScore W2186402307C84525736 @default.
- W2186402307 hasConceptScore W2186402307C95623464 @default.
- W2186402307 hasLocation W21864023071 @default.
- W2186402307 hasOpenAccess W2186402307 @default.
- W2186402307 hasPrimaryLocation W21864023071 @default.
- W2186402307 hasRelatedWork W1482289351 @default.
- W2186402307 hasRelatedWork W1977731274 @default.
- W2186402307 hasRelatedWork W1990068598 @default.
- W2186402307 hasRelatedWork W2001014393 @default.
- W2186402307 hasRelatedWork W2146534786 @default.
- W2186402307 hasRelatedWork W2305666041 @default.
- W2186402307 hasRelatedWork W2334845011 @default.
- W2186402307 hasRelatedWork W2407977833 @default.
- W2186402307 hasRelatedWork W2562874528 @default.
- W2186402307 hasRelatedWork W2739764235 @default.
- W2186402307 hasRelatedWork W2901368257 @default.
- W2186402307 hasRelatedWork W2905754522 @default.
- W2186402307 hasRelatedWork W2969714789 @default.
- W2186402307 hasRelatedWork W2994847068 @default.
- W2186402307 hasRelatedWork W3004115857 @default.
- W2186402307 hasRelatedWork W3177354419 @default.
- W2186402307 hasRelatedWork W48960425 @default.
- W2186402307 hasRelatedWork W84227776 @default.
- W2186402307 hasRelatedWork W2862230811 @default.
- W2186402307 hasRelatedWork W2960974791 @default.
- W2186402307 isParatext "false" @default.
- W2186402307 isRetracted "false" @default.
- W2186402307 magId "2186402307" @default.
- W2186402307 workType "article" @default.