Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186452483> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2186452483 abstract "We would like to congratulate the authors on their efforts in presenting a unified approached to the use of sequential Monte Carlo (SMC) samplers in Bayesian computation. In this, and the companion publication (Del Moral et al. 2006), the authors illustrate the use of SMC as an alternative to Markov chain Monte Carlo (MCMC). These methods have several advantages over traditional MCMC methods. Firstly, unlike MCMC, SMC methods do not face the sometimes contentious issue of diagnosing convergence of a Markov chain. Secondly, in problems where mixing is chronically slow, this method appear to offer a more efficient alternative, see Sisson et al (2006) for example. Finally, as the authors point out, adaptive proposals for transition kernels can easily be applied since the validity of SMC does not rely on ergodic properties of any Markov chain. This last property may give the SMC approach more scope for improving algorithm efficiency than MCMC. In reference to the binary probit regression model presented in Section 4.2, the authors chose to use a multivariate normal distribution as the initial importance distribution, with parameter value given by simulated estimates from an MCMC sampler. An alternative, more efficient strategy may be to estimate the parameters of the multivariate normal distribution by fitting the frequentist binary probit regressionmodel. One can obtain maximum likelihood and the associated variance-covariance estimates for this, and many other, models using standard statistical software packages. We are currently designing a SMC method to fit a general design generalized linear mixed model (GLMM) (Zhao et al. 2006) and find this approach to work well. The authors adopt an MCMC kernel, and update the coefficients of the covariates β from its full conditional distribution. If one cannot sample directly from the full conditional distributions, a Metropolis-Hastings kernel may be used. The choice of scaling parameters in such kernels can greatly influence the performance of the sampler, and it is not clear if optimal scaling techniques developed in the MCMC literature are immediately applicable here. In our current work to use these techniques for GLMMs we have found that using the variance-covariance estimate from the frequentist model as a guide for scaling the MH proposal variance works well. In general, can the authors offer any guidance on the properties of optimal MCMC kernels for use with SMC samplers?" @default.
- W2186452483 created "2016-06-24" @default.
- W2186452483 creator A5019694867 @default.
- W2186452483 creator A5040706665 @default.
- W2186452483 creator A5087673269 @default.
- W2186452483 date "2006-01-01" @default.
- W2186452483 modified "2023-09-25" @default.
- W2186452483 title "Discussion to Sequential Monte Carlo for Bayesian Computation" @default.
- W2186452483 cites W2147357149 @default.
- W2186452483 cites W2151729750 @default.
- W2186452483 hasPublicationYear "2006" @default.
- W2186452483 type Work @default.
- W2186452483 sameAs 2186452483 @default.
- W2186452483 citedByCount "0" @default.
- W2186452483 crossrefType "journal-article" @default.
- W2186452483 hasAuthorship W2186452483A5019694867 @default.
- W2186452483 hasAuthorship W2186452483A5040706665 @default.
- W2186452483 hasAuthorship W2186452483A5087673269 @default.
- W2186452483 hasConcept C105795698 @default.
- W2186452483 hasConcept C107673813 @default.
- W2186452483 hasConcept C111350023 @default.
- W2186452483 hasConcept C11413529 @default.
- W2186452483 hasConcept C149782125 @default.
- W2186452483 hasConcept C160234255 @default.
- W2186452483 hasConcept C162376815 @default.
- W2186452483 hasConcept C33923547 @default.
- W2186452483 hasConcept C41008148 @default.
- W2186452483 hasConcept C98763669 @default.
- W2186452483 hasConceptScore W2186452483C105795698 @default.
- W2186452483 hasConceptScore W2186452483C107673813 @default.
- W2186452483 hasConceptScore W2186452483C111350023 @default.
- W2186452483 hasConceptScore W2186452483C11413529 @default.
- W2186452483 hasConceptScore W2186452483C149782125 @default.
- W2186452483 hasConceptScore W2186452483C160234255 @default.
- W2186452483 hasConceptScore W2186452483C162376815 @default.
- W2186452483 hasConceptScore W2186452483C33923547 @default.
- W2186452483 hasConceptScore W2186452483C41008148 @default.
- W2186452483 hasConceptScore W2186452483C98763669 @default.
- W2186452483 hasLocation W21864524831 @default.
- W2186452483 hasOpenAccess W2186452483 @default.
- W2186452483 hasPrimaryLocation W21864524831 @default.
- W2186452483 hasRelatedWork W1602721400 @default.
- W2186452483 hasRelatedWork W1857729084 @default.
- W2186452483 hasRelatedWork W2000186700 @default.
- W2186452483 hasRelatedWork W2078051489 @default.
- W2186452483 hasRelatedWork W2118425068 @default.
- W2186452483 hasRelatedWork W2614055028 @default.
- W2186452483 hasRelatedWork W2712681089 @default.
- W2186452483 hasRelatedWork W2728445641 @default.
- W2186452483 hasRelatedWork W2888809737 @default.
- W2186452483 hasRelatedWork W2911264190 @default.
- W2186452483 hasRelatedWork W2950155367 @default.
- W2186452483 hasRelatedWork W2950173047 @default.
- W2186452483 hasRelatedWork W2965376662 @default.
- W2186452483 hasRelatedWork W2971403200 @default.
- W2186452483 hasRelatedWork W2986931787 @default.
- W2186452483 hasRelatedWork W3083615170 @default.
- W2186452483 hasRelatedWork W3105405776 @default.
- W2186452483 hasRelatedWork W3106391956 @default.
- W2186452483 hasRelatedWork W3209927388 @default.
- W2186452483 hasRelatedWork W893480 @default.
- W2186452483 isParatext "false" @default.
- W2186452483 isRetracted "false" @default.
- W2186452483 magId "2186452483" @default.
- W2186452483 workType "article" @default.