Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186533991> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2186533991 abstract "0.0. Riemann and Riemann surfaces. Some of Riemann’s ideas were about a century ahead of his time. Here is a short list of them related to the surfaces bearing Riemann’s name. • The definition of a Riemann surface transformed a vague concept of a multi-valued (analytic) function into the concept of a usual function defined on something spread over the complex line. During the XXth century this something was further transformed into the definition of a topological surface endowed with the sheaf of holomorphic functions. • The definition of genus was one of the first rigorously defined topological concepts, and it turned out to be closely related to algebraic geometry and complex analysis. • The seemingly technical problem of calculating the dimensions of spaces of meromorphic functions with a prescribed pole structure was completely solved by Riemann himself and his student Gustav Roch; it turned out to be the origin of one of the most powerful generalizations of the XXth century – the Riemann-Roch-Hirzebruch-Grothendieck. . . theorem. • The idea of classification of abstract Riemann surfaces up to isomorphism inspired Riemann to introduce one of the most mysterious objects of modern math, the moduli spaces Mg of Riemann surfaces of genus g, and to calculate their dimensions. The complete understanding of moduli spaces (e.g., their homologies ) is still out of the scope of our understanding. • Riemann’s existence theorem identified these newly introduced Riemann surfaces with the well-developed theory of algebraic curves. This list can be easily continued (abelian integrals, theta functions, . . . ). The theory of Riemann surfaces is one of several from Riemann’s legacy that has developed into a deep branch of mathematics and is quite active nowadays. It is, however, unique in one aspect: its objects are as visualizable as, say, the triangles in the elementary geometry (the zeros of the zeta function are not). The present paper, as its title suggests, is mainly devoted to the details of the visualization of Riemann surfaces. There is, however an important difference between the Riemann’s and the Grothendieck’s approach. Riemann thought about his surfaces in the context of continuous mathematics; therefore, the genuine Riemann surfaces are subject to continuous variation of parameters — usually complex numbers. As for the visualization tools introduced by Grothendieck (dessins d’enfants, see below), they are intended to store the complex structure on a surface in the finite amount of graphical information. Therefore, not all the Riemann surfaces are storable by dessins" @default.
- W2186533991 created "2016-06-24" @default.
- W2186533991 creator A5003548931 @default.
- W2186533991 date "2008-01-01" @default.
- W2186533991 modified "2023-10-12" @default.
- W2186533991 title "Visualizing algebraic curves: from Riemann to Grothendieck" @default.
- W2186533991 cites W1479870152 @default.
- W2186533991 cites W1515192744 @default.
- W2186533991 cites W1515716354 @default.
- W2186533991 cites W1585244820 @default.
- W2186533991 cites W1972563066 @default.
- W2186533991 cites W2046478710 @default.
- W2186533991 cites W2063268652 @default.
- W2186533991 cites W2082954460 @default.
- W2186533991 cites W2132762939 @default.
- W2186533991 cites W225882358 @default.
- W2186533991 cites W2502038283 @default.
- W2186533991 hasPublicationYear "2008" @default.
- W2186533991 type Work @default.
- W2186533991 sameAs 2186533991 @default.
- W2186533991 citedByCount "0" @default.
- W2186533991 crossrefType "journal-article" @default.
- W2186533991 hasAuthorship W2186533991A5003548931 @default.
- W2186533991 hasConcept C112468886 @default.
- W2186533991 hasConcept C131356121 @default.
- W2186533991 hasConcept C136119220 @default.
- W2186533991 hasConcept C157369684 @default.
- W2186533991 hasConcept C18556879 @default.
- W2186533991 hasConcept C190333341 @default.
- W2186533991 hasConcept C199479865 @default.
- W2186533991 hasConcept C202444582 @default.
- W2186533991 hasConcept C204575570 @default.
- W2186533991 hasConcept C26020477 @default.
- W2186533991 hasConcept C33923547 @default.
- W2186533991 hasConcept C48902493 @default.
- W2186533991 hasConcept C59822182 @default.
- W2186533991 hasConcept C73373263 @default.
- W2186533991 hasConcept C86803240 @default.
- W2186533991 hasConceptScore W2186533991C112468886 @default.
- W2186533991 hasConceptScore W2186533991C131356121 @default.
- W2186533991 hasConceptScore W2186533991C136119220 @default.
- W2186533991 hasConceptScore W2186533991C157369684 @default.
- W2186533991 hasConceptScore W2186533991C18556879 @default.
- W2186533991 hasConceptScore W2186533991C190333341 @default.
- W2186533991 hasConceptScore W2186533991C199479865 @default.
- W2186533991 hasConceptScore W2186533991C202444582 @default.
- W2186533991 hasConceptScore W2186533991C204575570 @default.
- W2186533991 hasConceptScore W2186533991C26020477 @default.
- W2186533991 hasConceptScore W2186533991C33923547 @default.
- W2186533991 hasConceptScore W2186533991C48902493 @default.
- W2186533991 hasConceptScore W2186533991C59822182 @default.
- W2186533991 hasConceptScore W2186533991C73373263 @default.
- W2186533991 hasConceptScore W2186533991C86803240 @default.
- W2186533991 hasIssue "1" @default.
- W2186533991 hasLocation W21865339911 @default.
- W2186533991 hasOpenAccess W2186533991 @default.
- W2186533991 hasPrimaryLocation W21865339911 @default.
- W2186533991 hasRelatedWork W1499399171 @default.
- W2186533991 hasRelatedWork W1521746660 @default.
- W2186533991 hasRelatedWork W1530437689 @default.
- W2186533991 hasRelatedWork W1565495400 @default.
- W2186533991 hasRelatedWork W1650032532 @default.
- W2186533991 hasRelatedWork W2047217959 @default.
- W2186533991 hasRelatedWork W2055307005 @default.
- W2186533991 hasRelatedWork W2089203999 @default.
- W2186533991 hasRelatedWork W2545034144 @default.
- W2186533991 hasRelatedWork W2728256218 @default.
- W2186533991 hasRelatedWork W2996290954 @default.
- W2186533991 hasRelatedWork W3101650939 @default.
- W2186533991 hasRelatedWork W3132698176 @default.
- W2186533991 hasRelatedWork W577606392 @default.
- W2186533991 hasRelatedWork W588295442 @default.
- W2186533991 hasRelatedWork W625593473 @default.
- W2186533991 hasRelatedWork W2093852531 @default.
- W2186533991 hasRelatedWork W2229241765 @default.
- W2186533991 hasRelatedWork W2243055081 @default.
- W2186533991 hasVolume "1" @default.
- W2186533991 isParatext "false" @default.
- W2186533991 isRetracted "false" @default.
- W2186533991 magId "2186533991" @default.
- W2186533991 workType "article" @default.