Matches in SemOpenAlex for { <https://semopenalex.org/work/W2186545911> ?p ?o ?g. }
- W2186545911 abstract "Several numerical methods and algorithms, for solving the mathematical model of a continuous casting process, are presented, and theoretically studied, in this work. The numerical algorithms can be divided in to three different groups: the Schwarz type overlapping methods, the nonoverlapping Splitting iterative methods, and the Predictor-Corrector type nonoverlapping methods. These algorithms are all so-called parallel algorithms i.e., they are highly suitable for parallel computers. Multiplicative, additive Schwarz alternating method and two asynchronous domain decomposition methods, which appear to be a two-stage Schwarz alternating algorithms, are theoretically and numerically studied. Unique solvability of the fully implicit and semi-implicit finite difference schemes as well as monotone dependence of the solution on the right-hand side are proved. Geometric rate of convergence for the iterative methods is investigated. Splitting iterative methods for the sum of maximal monotone and single-valued monotone operators in a finite-dimensional space are studied. Convergence, rate of convergence and optimal iterative parameters are derived. A two-stage iterative method with inner iterations is analyzed in the case when both operators are linear, self-adjoint and positive definite. Several new finite-difference schemes for a nonlinear convection-diffusion problem are constructed and numerically studied. These schemes are constructed on the basis of non-overlapping domain decomposition and predictor-corrector approach. Different non-overlapping decompositions of a domain, with cross-points and angles, schemes with grid refinement in time in some subdomains, are used. All proposed algorithms are extensively numerically tested and are founded stable and accurate under natural assumptions for time and space grid steps. The advantages and disadvantages of the numerical methods are clearly seen in the numerical examples. All of the algorithms presented are quite easy and straight forward, from an implementation point of view. The speedups show that splitting iterative method can be parallelized better than multiplicative or additive Schwarz alternating method. The numerical examples show that the multidecomposition method is a very effective numerical method for solving the continuous casting problem. The idea of dividing the subdomains to smaller subdomains seems to be very beneficial and profitable. The advantages of multidecomposition methods over other methods is obvious. Multidecomposition methods are extremely quick, while being just as accurate as other methods. The numerical results for one processor seem to be very promising." @default.
- W2186545911 created "2016-06-24" @default.
- W2186545911 creator A5027074503 @default.
- W2186545911 date "2004-01-01" @default.
- W2186545911 modified "2023-09-27" @default.
- W2186545911 title "DOMAIN DECOMPOSITION METHODS FOR CONTINUOUS CASTING PROBLEM" @default.
- W2186545911 cites W108798477 @default.
- W2186545911 cites W1492913691 @default.
- W2186545911 cites W1518084533 @default.
- W2186545911 cites W1559533846 @default.
- W2186545911 cites W169367000 @default.
- W2186545911 cites W1971828425 @default.
- W2186545911 cites W1975271504 @default.
- W2186545911 cites W1983390818 @default.
- W2186545911 cites W1999453927 @default.
- W2186545911 cites W1999630686 @default.
- W2186545911 cites W2000582360 @default.
- W2186545911 cites W2011094287 @default.
- W2186545911 cites W2015092776 @default.
- W2186545911 cites W2028230944 @default.
- W2186545911 cites W2028810637 @default.
- W2186545911 cites W2045563146 @default.
- W2186545911 cites W2068604741 @default.
- W2186545911 cites W2072767883 @default.
- W2186545911 cites W2073419305 @default.
- W2186545911 cites W2074676788 @default.
- W2186545911 cites W2081117642 @default.
- W2186545911 cites W2083776975 @default.
- W2186545911 cites W2087446173 @default.
- W2186545911 cites W2090105604 @default.
- W2186545911 cites W2132677982 @default.
- W2186545911 cites W2170379025 @default.
- W2186545911 hasPublicationYear "2004" @default.
- W2186545911 type Work @default.
- W2186545911 sameAs 2186545911 @default.
- W2186545911 citedByCount "0" @default.
- W2186545911 crossrefType "journal-article" @default.
- W2186545911 hasAuthorship W2186545911A5027074503 @default.
- W2186545911 hasConcept C11413529 @default.
- W2186545911 hasConcept C121332964 @default.
- W2186545911 hasConcept C127162648 @default.
- W2186545911 hasConcept C134306372 @default.
- W2186545911 hasConcept C135628077 @default.
- W2186545911 hasConcept C158622935 @default.
- W2186545911 hasConcept C159694833 @default.
- W2186545911 hasConcept C162324750 @default.
- W2186545911 hasConcept C174819683 @default.
- W2186545911 hasConcept C181330731 @default.
- W2186545911 hasConcept C198880260 @default.
- W2186545911 hasConcept C2524010 @default.
- W2186545911 hasConcept C2777303404 @default.
- W2186545911 hasConcept C2834757 @default.
- W2186545911 hasConcept C28826006 @default.
- W2186545911 hasConcept C31258907 @default.
- W2186545911 hasConcept C31278502 @default.
- W2186545911 hasConcept C33923547 @default.
- W2186545911 hasConcept C36503486 @default.
- W2186545911 hasConcept C41008148 @default.
- W2186545911 hasConcept C50522688 @default.
- W2186545911 hasConcept C57869625 @default.
- W2186545911 hasConcept C62520636 @default.
- W2186545911 hasConcept C97355855 @default.
- W2186545911 hasConceptScore W2186545911C11413529 @default.
- W2186545911 hasConceptScore W2186545911C121332964 @default.
- W2186545911 hasConceptScore W2186545911C127162648 @default.
- W2186545911 hasConceptScore W2186545911C134306372 @default.
- W2186545911 hasConceptScore W2186545911C135628077 @default.
- W2186545911 hasConceptScore W2186545911C158622935 @default.
- W2186545911 hasConceptScore W2186545911C159694833 @default.
- W2186545911 hasConceptScore W2186545911C162324750 @default.
- W2186545911 hasConceptScore W2186545911C174819683 @default.
- W2186545911 hasConceptScore W2186545911C181330731 @default.
- W2186545911 hasConceptScore W2186545911C198880260 @default.
- W2186545911 hasConceptScore W2186545911C2524010 @default.
- W2186545911 hasConceptScore W2186545911C2777303404 @default.
- W2186545911 hasConceptScore W2186545911C2834757 @default.
- W2186545911 hasConceptScore W2186545911C28826006 @default.
- W2186545911 hasConceptScore W2186545911C31258907 @default.
- W2186545911 hasConceptScore W2186545911C31278502 @default.
- W2186545911 hasConceptScore W2186545911C33923547 @default.
- W2186545911 hasConceptScore W2186545911C36503486 @default.
- W2186545911 hasConceptScore W2186545911C41008148 @default.
- W2186545911 hasConceptScore W2186545911C50522688 @default.
- W2186545911 hasConceptScore W2186545911C57869625 @default.
- W2186545911 hasConceptScore W2186545911C62520636 @default.
- W2186545911 hasConceptScore W2186545911C97355855 @default.
- W2186545911 hasLocation W21865459111 @default.
- W2186545911 hasOpenAccess W2186545911 @default.
- W2186545911 hasPrimaryLocation W21865459111 @default.
- W2186545911 hasRelatedWork W107510031 @default.
- W2186545911 hasRelatedWork W123103207 @default.
- W2186545911 hasRelatedWork W137884529 @default.
- W2186545911 hasRelatedWork W1599083775 @default.
- W2186545911 hasRelatedWork W1602201142 @default.
- W2186545911 hasRelatedWork W164235952 @default.
- W2186545911 hasRelatedWork W1668829611 @default.
- W2186545911 hasRelatedWork W2014163417 @default.
- W2186545911 hasRelatedWork W2071235112 @default.
- W2186545911 hasRelatedWork W2089251753 @default.
- W2186545911 hasRelatedWork W2340873561 @default.