Matches in SemOpenAlex for { <https://semopenalex.org/work/W2187012331> ?p ?o ?g. }
- W2187012331 abstract "Point set visualization is required in lots of visualization techniques. Scatter plots as well as geographic heat-maps are straightforward examples. Data analysts are now well trained to use such visualization techniques. The availability of larger and larger datasets raises the need to make these techniques scale as fast as the data grows. The Big Data Infrastructure offers the possibility to scale horizontally. Designing point set visualization methods that fit into that new paradigm is thus a crucial challenge. In this paper, we present a complete architecture which fully fits into the Big Data paradigm and so enables interactive visualization of heatmaps at ultra-scale. A new distributed algorithm for multi-scale aggregation of point set is given and an adaptive GPU based method for kernel density estimation is proposed. A complete prototype working with Hadoop, HBase, Spark and WebGL has been implemented. We give a benchmark of our solution on a dataset having more than 2 billion points." @default.
- W2187012331 created "2016-06-24" @default.
- W2187012331 creator A5011581508 @default.
- W2187012331 creator A5021576702 @default.
- W2187012331 creator A5047477217 @default.
- W2187012331 creator A5056006897 @default.
- W2187012331 creator A5073678051 @default.
- W2187012331 date "2015-10-01" @default.
- W2187012331 modified "2023-10-14" @default.
- W2187012331 title "Large interactive visualization of density functions on big data infrastructure" @default.
- W2187012331 cites W1535532259 @default.
- W2187012331 cites W1557337555 @default.
- W2187012331 cites W168003289 @default.
- W2187012331 cites W1734878544 @default.
- W2187012331 cites W1974767305 @default.
- W2187012331 cites W1981420413 @default.
- W2187012331 cites W1987269142 @default.
- W2187012331 cites W2001749563 @default.
- W2187012331 cites W2004089651 @default.
- W2187012331 cites W2014268383 @default.
- W2187012331 cites W2030155517 @default.
- W2187012331 cites W2036216970 @default.
- W2187012331 cites W2037894060 @default.
- W2187012331 cites W2064815440 @default.
- W2187012331 cites W2068688638 @default.
- W2187012331 cites W2086187879 @default.
- W2187012331 cites W2090167930 @default.
- W2187012331 cites W2110953678 @default.
- W2187012331 cites W2116018104 @default.
- W2187012331 cites W2118020555 @default.
- W2187012331 cites W2121418890 @default.
- W2187012331 cites W2122991194 @default.
- W2187012331 cites W2131548207 @default.
- W2187012331 cites W2133665775 @default.
- W2187012331 cites W2134173392 @default.
- W2187012331 cites W2154672112 @default.
- W2187012331 cites W2161768947 @default.
- W2187012331 cites W2167976873 @default.
- W2187012331 cites W2168144378 @default.
- W2187012331 cites W2173213060 @default.
- W2187012331 cites W2182708376 @default.
- W2187012331 cites W2542382099 @default.
- W2187012331 cites W4233014035 @default.
- W2187012331 cites W4253334613 @default.
- W2187012331 doi "https://doi.org/10.1109/ldav.2015.7348077" @default.
- W2187012331 hasPublicationYear "2015" @default.
- W2187012331 type Work @default.
- W2187012331 sameAs 2187012331 @default.
- W2187012331 citedByCount "41" @default.
- W2187012331 countsByYear W21870123312017 @default.
- W2187012331 countsByYear W21870123312018 @default.
- W2187012331 countsByYear W21870123312019 @default.
- W2187012331 countsByYear W21870123312020 @default.
- W2187012331 countsByYear W21870123312021 @default.
- W2187012331 countsByYear W21870123312022 @default.
- W2187012331 countsByYear W21870123312023 @default.
- W2187012331 crossrefType "proceedings-article" @default.
- W2187012331 hasAuthorship W2187012331A5011581508 @default.
- W2187012331 hasAuthorship W2187012331A5021576702 @default.
- W2187012331 hasAuthorship W2187012331A5047477217 @default.
- W2187012331 hasAuthorship W2187012331A5056006897 @default.
- W2187012331 hasAuthorship W2187012331A5073678051 @default.
- W2187012331 hasBestOaLocation W21870123312 @default.
- W2187012331 hasConcept C105795698 @default.
- W2187012331 hasConcept C114614502 @default.
- W2187012331 hasConcept C121332964 @default.
- W2187012331 hasConcept C124101348 @default.
- W2187012331 hasConcept C13280743 @default.
- W2187012331 hasConcept C154945302 @default.
- W2187012331 hasConcept C172367668 @default.
- W2187012331 hasConcept C177264268 @default.
- W2187012331 hasConcept C185429906 @default.
- W2187012331 hasConcept C185798385 @default.
- W2187012331 hasConcept C199360897 @default.
- W2187012331 hasConcept C205649164 @default.
- W2187012331 hasConcept C2522767166 @default.
- W2187012331 hasConcept C2524010 @default.
- W2187012331 hasConcept C2778755073 @default.
- W2187012331 hasConcept C2781215313 @default.
- W2187012331 hasConcept C28719098 @default.
- W2187012331 hasConcept C33923547 @default.
- W2187012331 hasConcept C36464697 @default.
- W2187012331 hasConcept C41008148 @default.
- W2187012331 hasConcept C58489278 @default.
- W2187012331 hasConcept C62520636 @default.
- W2187012331 hasConcept C64073096 @default.
- W2187012331 hasConcept C71134354 @default.
- W2187012331 hasConcept C74193536 @default.
- W2187012331 hasConcept C75684735 @default.
- W2187012331 hasConceptScore W2187012331C105795698 @default.
- W2187012331 hasConceptScore W2187012331C114614502 @default.
- W2187012331 hasConceptScore W2187012331C121332964 @default.
- W2187012331 hasConceptScore W2187012331C124101348 @default.
- W2187012331 hasConceptScore W2187012331C13280743 @default.
- W2187012331 hasConceptScore W2187012331C154945302 @default.
- W2187012331 hasConceptScore W2187012331C172367668 @default.
- W2187012331 hasConceptScore W2187012331C177264268 @default.
- W2187012331 hasConceptScore W2187012331C185429906 @default.
- W2187012331 hasConceptScore W2187012331C185798385 @default.
- W2187012331 hasConceptScore W2187012331C199360897 @default.