Matches in SemOpenAlex for { <https://semopenalex.org/work/W2187072009> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2187072009 abstract "It is shown that the state feedback matrix of a linear system optimal with respect to a quadratic performance index can be expanded in a MacLaurin series in parameters which change the order of the system. The first two terms of this series are employed in a near-optimum design for a plant. The result of the near-optimum design is superior to that achieved by a conventional low-order design, while the amount of computation is considerably less than that required for a design. An example of a second-order design for a fifth-order plant is given. A ISTHODVCTIOK AIETHOD for designing approximately opt.inlal regulators for linear plants with quadratic performance indexes is proposed in this paper. The method is motivat,ed by t,he fact t,hat, the applica,tion of the existing design procedure (l), (2) t.0 plants represents a computationally difficult, and cumbersome task. It is well known t.hat the number of scalar equations, which correspond t,o t.he mat.ris Riccati equation, in- creases wit.h the square of the order of the plant equation. A conventiona.1 attempt to avoid this difficulty is to neglect. some small t.ilne const.ants, momenk of inert.ia, and similar parasitic pamrneters which increase the cquation order. In thc following thc approach based on such a descript,ion of the plant. is called the low-order dc4gn. The design based on a high-order description of t,he plant in wllich these parasitic param- et,ers are not neglect,ed is called the design. At, t,he present time a designer is left with t.he dilemma.: eit,her to apply the design lvhich is comput,a- tionally involved or to use a loworder design which is simpler, but which may result in a.n unsat,isfactory syst.em performance. The singular perturbat,ion method proposed here provides an a.nalytica1 tool for resolving this dilemma. It results in better system performance than achieved by the low-order design and requires considerably less computa- tion than the design. In t.his met,hod attent.ion is focused upon the dependence of the opt,imal feedback gain mat,rix K on small parameters whose presence increases t,he order of the plant equation. It is proved that K can be expa.nded in a AlacLaurin series with respect to t.hese parameters. The first term of this ex- pansion corresponds to the low-order design. The second term and, if necessary, several more terms are used as a near-opt,imum correct,ion of the low-order design. The effectiveness of the proposed method is illustrat,ed by a second-order dmign for a fifth-order plant,. This paper makes use of the singular perturbation theory of ordinary differential equations (3)-(GI. It represents further ext,ension and application of the method proposed in an earlier paper (?I. LOW-ORDER -4h'D HIGH-ORDER DESIGKS A compa.rison of the and low-order designs motivates the method developed here. Let" @default.
- W2187072009 created "2016-06-24" @default.
- W2187072009 creator A5047387307 @default.
- W2187072009 date "1969-01-01" @default.
- W2187072009 modified "2023-09-26" @default.
- W2187072009 title "Near-Optimum Design of Linear Systems by a Singular Perturbation Method" @default.
- W2187072009 hasPublicationYear "1969" @default.
- W2187072009 type Work @default.
- W2187072009 sameAs 2187072009 @default.
- W2187072009 citedByCount "0" @default.
- W2187072009 crossrefType "journal-article" @default.
- W2187072009 hasAuthorship W2187072009A5047387307 @default.
- W2187072009 hasConcept C10138342 @default.
- W2187072009 hasConcept C11413529 @default.
- W2187072009 hasConcept C129844170 @default.
- W2187072009 hasConcept C134306372 @default.
- W2187072009 hasConcept C143724316 @default.
- W2187072009 hasConcept C151730666 @default.
- W2187072009 hasConcept C154945302 @default.
- W2187072009 hasConcept C162324750 @default.
- W2187072009 hasConcept C182306322 @default.
- W2187072009 hasConcept C2524010 @default.
- W2187072009 hasConcept C2775924081 @default.
- W2187072009 hasConcept C28826006 @default.
- W2187072009 hasConcept C33923547 @default.
- W2187072009 hasConcept C41008148 @default.
- W2187072009 hasConcept C45374587 @default.
- W2187072009 hasConcept C45473103 @default.
- W2187072009 hasConcept C47446073 @default.
- W2187072009 hasConcept C57691317 @default.
- W2187072009 hasConcept C6802819 @default.
- W2187072009 hasConcept C86803240 @default.
- W2187072009 hasConcept C93779851 @default.
- W2187072009 hasConceptScore W2187072009C10138342 @default.
- W2187072009 hasConceptScore W2187072009C11413529 @default.
- W2187072009 hasConceptScore W2187072009C129844170 @default.
- W2187072009 hasConceptScore W2187072009C134306372 @default.
- W2187072009 hasConceptScore W2187072009C143724316 @default.
- W2187072009 hasConceptScore W2187072009C151730666 @default.
- W2187072009 hasConceptScore W2187072009C154945302 @default.
- W2187072009 hasConceptScore W2187072009C162324750 @default.
- W2187072009 hasConceptScore W2187072009C182306322 @default.
- W2187072009 hasConceptScore W2187072009C2524010 @default.
- W2187072009 hasConceptScore W2187072009C2775924081 @default.
- W2187072009 hasConceptScore W2187072009C28826006 @default.
- W2187072009 hasConceptScore W2187072009C33923547 @default.
- W2187072009 hasConceptScore W2187072009C41008148 @default.
- W2187072009 hasConceptScore W2187072009C45374587 @default.
- W2187072009 hasConceptScore W2187072009C45473103 @default.
- W2187072009 hasConceptScore W2187072009C47446073 @default.
- W2187072009 hasConceptScore W2187072009C57691317 @default.
- W2187072009 hasConceptScore W2187072009C6802819 @default.
- W2187072009 hasConceptScore W2187072009C86803240 @default.
- W2187072009 hasConceptScore W2187072009C93779851 @default.
- W2187072009 hasLocation W21870720091 @default.
- W2187072009 hasOpenAccess W2187072009 @default.
- W2187072009 hasPrimaryLocation W21870720091 @default.
- W2187072009 hasRelatedWork W1507602356 @default.
- W2187072009 hasRelatedWork W1969264720 @default.
- W2187072009 hasRelatedWork W1977401603 @default.
- W2187072009 hasRelatedWork W2024068936 @default.
- W2187072009 hasRelatedWork W2056069510 @default.
- W2187072009 hasRelatedWork W2072152719 @default.
- W2187072009 hasRelatedWork W2076887944 @default.
- W2187072009 hasRelatedWork W2077245175 @default.
- W2187072009 hasRelatedWork W2113995854 @default.
- W2187072009 hasRelatedWork W2134383471 @default.
- W2187072009 hasRelatedWork W2187882118 @default.
- W2187072009 hasRelatedWork W2364474993 @default.
- W2187072009 hasRelatedWork W2807716334 @default.
- W2187072009 hasRelatedWork W2915363555 @default.
- W2187072009 hasRelatedWork W3033955973 @default.
- W2187072009 hasRelatedWork W3102774238 @default.
- W2187072009 hasRelatedWork W3118808345 @default.
- W2187072009 hasRelatedWork W61159901 @default.
- W2187072009 hasRelatedWork W89880111 @default.
- W2187072009 hasRelatedWork W2184666338 @default.
- W2187072009 isParatext "false" @default.
- W2187072009 isRetracted "false" @default.
- W2187072009 magId "2187072009" @default.
- W2187072009 workType "article" @default.