Matches in SemOpenAlex for { <https://semopenalex.org/work/W2187135979> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2187135979 abstract "If G is a connected Lie group, the Kasparov representation ring KK^G(C,C) contains a singularly important element---the gamma-element---which is an idempotent relating the Kasparov representation ring of G with the representation ring of its maximal compact subgroup K. In the proofs of the Baum-Connes conjecture with coefficients for the groups G=SO(n,1) [Kasparov] and G=SU(n,1) [Julg-Kasparov], a key component is an explicit construction of the gamma-element as an element of G-equivariant K-homology for the space G/B, where B is the Borel subgroup of G. In this thesis, we describe some analytical constructions which may be useful for such a construction of $gamma$ for the rank-two Lie group G=SL(3,C). The inspiration is the Bernstein-Gel'fand-Gel'fand complex---a natural differential complex of homogeneous bundles over G/B. The reasons for considering this complex are explained in detail. For G=SL(3,C), the space G/B admits two canonical fibrations, which play a recurring role in the analysis to follow. The local geometry of G/B can be modeled on the geometry of the three-dimensional complex Heisenberg group H in a very strong way. Consequently, we study the algebra of differential operators on H. We define a two-parameter family H^(m,n)(H) of Sobolev-like spaces, using the two fibrations of G/B. We introduce fibrewise Laplacian operators $Delta_X$ and $Delta_Y$ on $H$. We show that these operators satisfy a kind of directional ellipticity in terms of the spaces H^(m,n)(H) for certain values of (m,n), but also provide a counterexample to this property for another choice of (m,n). This counterexample is a significant obstacle to a pseudodifferential approach to the gamma-element for SL(3,C). Instead we turn to the harmonic analysis of the compact subgroup K=SU(3). Here, using the simultaneous spectral theory of the K-invariant fibrewise Laplacians on G/B, we construct a C*-category $mathcal{A}$ and ideals $mathcal{K}_X$ and $mathcal{K}_Y$ related to the canonical fibrations. We explain why these are likely natural homes for the operators which would appear in a construction of the gamma-element." @default.
- W2187135979 created "2016-06-24" @default.
- W2187135979 creator A5066528318 @default.
- W2187135979 date "2006-05-12" @default.
- W2187135979 modified "2023-09-27" @default.
- W2187135979 title "Analytic structures for the index theory of SL(3,C)" @default.
- W2187135979 cites W135327735 @default.
- W2187135979 cites W1505155930 @default.
- W2187135979 cites W1514911332 @default.
- W2187135979 cites W1612286975 @default.
- W2187135979 cites W1694080093 @default.
- W2187135979 cites W1724968990 @default.
- W2187135979 cites W2007579992 @default.
- W2187135979 cites W2083223809 @default.
- W2187135979 cites W2482638577 @default.
- W2187135979 cites W2755154457 @default.
- W2187135979 cites W3022477749 @default.
- W2187135979 cites W621245321 @default.
- W2187135979 cites W70769460 @default.
- W2187135979 hasPublicationYear "2006" @default.
- W2187135979 type Work @default.
- W2187135979 sameAs 2187135979 @default.
- W2187135979 citedByCount "2" @default.
- W2187135979 crossrefType "dissertation" @default.
- W2187135979 hasAuthorship W2187135979A5066528318 @default.
- W2187135979 hasConcept C114614502 @default.
- W2187135979 hasConcept C121332964 @default.
- W2187135979 hasConcept C164226766 @default.
- W2187135979 hasConcept C167204820 @default.
- W2187135979 hasConcept C171036898 @default.
- W2187135979 hasConcept C17744445 @default.
- W2187135979 hasConcept C187915474 @default.
- W2187135979 hasConcept C199539241 @default.
- W2187135979 hasConcept C200288055 @default.
- W2187135979 hasConcept C202444582 @default.
- W2187135979 hasConcept C2780990831 @default.
- W2187135979 hasConcept C2781311116 @default.
- W2187135979 hasConcept C33923547 @default.
- W2187135979 hasConcept C62520636 @default.
- W2187135979 hasConcept C70915906 @default.
- W2187135979 hasConceptScore W2187135979C114614502 @default.
- W2187135979 hasConceptScore W2187135979C121332964 @default.
- W2187135979 hasConceptScore W2187135979C164226766 @default.
- W2187135979 hasConceptScore W2187135979C167204820 @default.
- W2187135979 hasConceptScore W2187135979C171036898 @default.
- W2187135979 hasConceptScore W2187135979C17744445 @default.
- W2187135979 hasConceptScore W2187135979C187915474 @default.
- W2187135979 hasConceptScore W2187135979C199539241 @default.
- W2187135979 hasConceptScore W2187135979C200288055 @default.
- W2187135979 hasConceptScore W2187135979C202444582 @default.
- W2187135979 hasConceptScore W2187135979C2780990831 @default.
- W2187135979 hasConceptScore W2187135979C2781311116 @default.
- W2187135979 hasConceptScore W2187135979C33923547 @default.
- W2187135979 hasConceptScore W2187135979C62520636 @default.
- W2187135979 hasConceptScore W2187135979C70915906 @default.
- W2187135979 hasLocation W21871359791 @default.
- W2187135979 hasOpenAccess W2187135979 @default.
- W2187135979 hasPrimaryLocation W21871359791 @default.
- W2187135979 hasRelatedWork W1539469757 @default.
- W2187135979 hasRelatedWork W1562563233 @default.
- W2187135979 hasRelatedWork W192962078 @default.
- W2187135979 hasRelatedWork W2031378829 @default.
- W2187135979 hasRelatedWork W2043153262 @default.
- W2187135979 hasRelatedWork W2060436835 @default.
- W2187135979 hasRelatedWork W2263697070 @default.
- W2187135979 hasRelatedWork W2773841179 @default.
- W2187135979 hasRelatedWork W2915900093 @default.
- W2187135979 hasRelatedWork W2949515865 @default.
- W2187135979 hasRelatedWork W2950364167 @default.
- W2187135979 hasRelatedWork W2951546680 @default.
- W2187135979 hasRelatedWork W2952120599 @default.
- W2187135979 hasRelatedWork W2952649720 @default.
- W2187135979 hasRelatedWork W2964065070 @default.
- W2187135979 hasRelatedWork W2980892141 @default.
- W2187135979 hasRelatedWork W2992752098 @default.
- W2187135979 hasRelatedWork W3105536892 @default.
- W2187135979 hasRelatedWork W3168511145 @default.
- W2187135979 hasRelatedWork W58743771 @default.
- W2187135979 isParatext "false" @default.
- W2187135979 isRetracted "false" @default.
- W2187135979 magId "2187135979" @default.
- W2187135979 workType "dissertation" @default.