Matches in SemOpenAlex for { <https://semopenalex.org/work/W2187946878> ?p ?o ?g. }
- W2187946878 abstract "With the increasing availability of large datasets machine learning techniques are be- coming an increasingly attractive alternative to expert-designed approaches to solving complex problems in domains where data is abundant. In this thesis we introduce several models for large sparse discrete datasets. Our approach, which is based on probabilistic models that use distributed representations to alleviate the effects of data sparsity, is applied to statistical language modelling and collaborative filtering. We introduce three probabilistic language models that represent words using learned real-valued vectors. Two of the models are based on the Restricted Boltzmann Machine (RBM) architecture while the third one is a simple deterministic model. We show that the deterministic model outperforms the widely used n-gram models and learns sensible word representations. To reduce the time complexity of training and making predictions with the deterministic model, we introduce a hierarchical version of the model, that can be exponentially faster. The speedup is achieved by structuring the vocabulary as a tree over words and taking advantage of this structure. We propose a simple feature-based algorithm for automatic construction of trees over words from data and show that the resulting models can outperform non-hierarchical neural models as well as the best n-gram models. We then turn our attention to collaborative filtering and show how RBM models can be used to model the distribution of sparse high-dimensional user rating vectors efficiently, presenting inference and learning algorithms that scale linearly in the number of observed ratings. We also introduce the Probabilistic Matrix Factorization model which is based on the probabilistic formulation of the low-rank matrix approximation problem for partially observed matrices. The two models are then extended to allow conditioning on the identities of the rated items whether or not the actual rating values are known. Our results on the Netflix Prize dataset show that both RBM and PMF models outperform online SVD models." @default.
- W2187946878 created "2016-06-24" @default.
- W2187946878 creator A5079370148 @default.
- W2187946878 date "2010-01-01" @default.
- W2187946878 modified "2023-10-18" @default.
- W2187946878 title "Learning distributed representations for statistical language modelling and collaborative filtering" @default.
- W2187946878 cites W10097614 @default.
- W2187946878 cites W145476170 @default.
- W2187946878 cites W1516111018 @default.
- W2187946878 cites W1526741802 @default.
- W2187946878 cites W1539057251 @default.
- W2187946878 cites W1547224907 @default.
- W2187946878 cites W1558797106 @default.
- W2187946878 cites W1612003148 @default.
- W2187946878 cites W1626544186 @default.
- W2187946878 cites W1631260214 @default.
- W2187946878 cites W1806731464 @default.
- W2187946878 cites W1808032177 @default.
- W2187946878 cites W195465510 @default.
- W2187946878 cites W1970689298 @default.
- W2187946878 cites W1976618413 @default.
- W2187946878 cites W1981457167 @default.
- W2187946878 cites W1994389483 @default.
- W2187946878 cites W2025653905 @default.
- W2187946878 cites W2056590938 @default.
- W2187946878 cites W2061460268 @default.
- W2187946878 cites W2070786785 @default.
- W2187946878 cites W2072128103 @default.
- W2187946878 cites W2077512673 @default.
- W2187946878 cites W2085040216 @default.
- W2187946878 cites W2091812280 @default.
- W2187946878 cites W2099866409 @default.
- W2187946878 cites W2100714283 @default.
- W2187946878 cites W2109720450 @default.
- W2187946878 cites W2110325612 @default.
- W2187946878 cites W2111305191 @default.
- W2187946878 cites W2116064496 @default.
- W2187946878 cites W2117130368 @default.
- W2187946878 cites W2118079529 @default.
- W2187946878 cites W2121227244 @default.
- W2187946878 cites W2122090912 @default.
- W2187946878 cites W2124914669 @default.
- W2187946878 cites W2127314673 @default.
- W2187946878 cites W2131462252 @default.
- W2187946878 cites W2132339004 @default.
- W2187946878 cites W2136922672 @default.
- W2187946878 cites W2137245235 @default.
- W2187946878 cites W2139828520 @default.
- W2187946878 cites W2140679639 @default.
- W2187946878 cites W2140842551 @default.
- W2187946878 cites W2147010501 @default.
- W2187946878 cites W2151052953 @default.
- W2187946878 cites W2152808281 @default.
- W2187946878 cites W2160576670 @default.
- W2187946878 cites W2162262658 @default.
- W2187946878 cites W2165395308 @default.
- W2187946878 cites W2169038197 @default.
- W2187946878 cites W2171960770 @default.
- W2187946878 cites W2187089797 @default.
- W2187946878 cites W2341535507 @default.
- W2187946878 cites W2535123820 @default.
- W2187946878 cites W2567948266 @default.
- W2187946878 cites W2613634265 @default.
- W2187946878 cites W2912225506 @default.
- W2187946878 cites W2950186769 @default.
- W2187946878 cites W2963880114 @default.
- W2187946878 cites W36903255 @default.
- W2187946878 cites W66838807 @default.
- W2187946878 hasPublicationYear "2010" @default.
- W2187946878 type Work @default.
- W2187946878 sameAs 2187946878 @default.
- W2187946878 citedByCount "4" @default.
- W2187946878 countsByYear W21879468782012 @default.
- W2187946878 countsByYear W21879468782013 @default.
- W2187946878 countsByYear W21879468782015 @default.
- W2187946878 countsByYear W21879468782016 @default.
- W2187946878 crossrefType "dissertation" @default.
- W2187946878 hasAuthorship W2187946878A5079370148 @default.
- W2187946878 hasConcept C108583219 @default.
- W2187946878 hasConcept C111472728 @default.
- W2187946878 hasConcept C111919701 @default.
- W2187946878 hasConcept C114289077 @default.
- W2187946878 hasConcept C119857082 @default.
- W2187946878 hasConcept C137293760 @default.
- W2187946878 hasConcept C138885662 @default.
- W2187946878 hasConcept C154945302 @default.
- W2187946878 hasConcept C199354608 @default.
- W2187946878 hasConcept C21569690 @default.
- W2187946878 hasConcept C2776401178 @default.
- W2187946878 hasConcept C2780586882 @default.
- W2187946878 hasConcept C41008148 @default.
- W2187946878 hasConcept C41895202 @default.
- W2187946878 hasConcept C49937458 @default.
- W2187946878 hasConcept C557471498 @default.
- W2187946878 hasConcept C68339613 @default.
- W2187946878 hasConcept C80444323 @default.
- W2187946878 hasConceptScore W2187946878C108583219 @default.
- W2187946878 hasConceptScore W2187946878C111472728 @default.
- W2187946878 hasConceptScore W2187946878C111919701 @default.
- W2187946878 hasConceptScore W2187946878C114289077 @default.