Matches in SemOpenAlex for { <https://semopenalex.org/work/W2188085663> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2188085663 abstract "New sensitive and reliable methods for assessing alterations in regional lung structure and function are critically important for the investigation and treatment of pulmonary diseases. Accurate identification of the airway tree will provide an assessment of airway structure and will provide a means by which multiple volumetric images of the lung at the same lung volume over time can be used to assess regional parenchymal changes. We describe a novel rule-based method for the seg- mentation of airway trees from three-dimensional (3-D) sets of computed tomography (CT) images, and its validation. The pre- sented method takes advantage of a priori anatomical knowledge about pulmonary airway and vascular trees and their inter- relationships. The method is based on a combination of 3-D seeded region growing that is used to identify large airways, rule- based two-dimensional (2-D) segmentation of individual CT slices to identify probable locations of smaller diameter airways, and merging of airway regions across the 3-D set of slices resulting in a tree-like airway structure. The method was validated in 40 3-mm-thick CT sections from five data sets of canine lungs scanned via electron beam CT in vivo with lung volume held at a constant pressure. The method's performance was compared with that of the conventional 3-D region growing method. The method substantially outperformed an existing conventional approach to airway tree detection. diseases, and in the assessment of the effects of time and ther- apy on the disease process. Since comparison of small changes in intrathoracic airways resulting over time from treatment can only be reliable if a quantitative scoring system is developed, automated or semiautomated detection of airway trees from HRCT image data is of paramount importance. Furthermore, a method developed to track airway structure over multiple lung volumes and across pharmacologic interventions will allow for advances in understanding of a broad-based set of physiologic and patho-physiologic conditions. Such airway tracking will not only allow for the assessment of the airway tree itself, but the tree structure also serves as a fiducial marker for the tracking of regional lung parenchyma. Identification of airway trees from 3-D CT image data sets is a very difficult problem and development of methods for airway tree detection suffers from several natural limitations of the image data quality inherent to CT scanning geometry and physics. Currently, HRCT scanning via the electron beam CT, as was used in this study, offers the best in-slice resolution of 0.4 /pixel. However, if the airway is not perpendicular to the scanning plane, its detectability may be lower due to partial volume effect. With a much lower image resolution along the z axis resulting from the lowest available slice thickness of 1.5 mm (we use 3 mm in the work presented here), many small objects like pulmonary airways or vessels become undetectable on a CT image. The situation is even worse in reality. Due to the fixed radiation exposure, the 1.5-mm-thick CT image slices exhibit much lower signal-to-noise ratio compared to the 3- mm-thick slices. As a result, 3-mm slice thickness is common in volumetric CT image data sets using the fastest electron beam CT scanning (scan aperture = 100 ms). The second limitation is linked to the in vivo character of CT imaging. While airway tree detection in isolated lung specimens may be achieved by simple threshold-based 3-D region growing, in vivo image data quality can be substantially influenced by breathing and heart motion artifacts, which make image analysis of such CT data sets difficult if not impossible. To fa- cilitate computerized analysis of thoracic CT data sets in vivo, complicated CT acquisition protocols must be followed-CT image acquisition must be electrocardiogram (ECG)-gated to minimize heart motion artifacts and can be volume controlled to minimize breathing motion artifacts (4). With such care, airways as small as or smaller than 1 mm can be visualized (but not quantified) and airway dimensions can be assessed for airways as small as 2 mm. In this paper, we study dogs in the order of 1%-kg body weight which is equivalent to a very young child. Thus, the analyzed dog airways are quite small and represent the worst case relative to humans. We describe an automated method for segmentation of airway trees from 3-D sets of CT images. The method is" @default.
- W2188085663 created "2016-06-24" @default.
- W2188085663 creator A5003544851 @default.
- W2188085663 creator A5018836634 @default.
- W2188085663 date "1996-01-01" @default.
- W2188085663 modified "2023-09-27" @default.
- W2188085663 title "ased Detection of Intrathoracic Airway Trees" @default.
- W2188085663 cites W1920384404 @default.
- W2188085663 cites W1946204380 @default.
- W2188085663 cites W1974638873 @default.
- W2188085663 cites W1974859171 @default.
- W2188085663 cites W1985916155 @default.
- W2188085663 cites W2012758067 @default.
- W2188085663 cites W2013676350 @default.
- W2188085663 cites W2016388542 @default.
- W2188085663 cites W2021040557 @default.
- W2188085663 cites W2022778488 @default.
- W2188085663 cites W2027175929 @default.
- W2188085663 cites W2034642273 @default.
- W2188085663 cites W2071367248 @default.
- W2188085663 cites W2082846510 @default.
- W2188085663 cites W2142564671 @default.
- W2188085663 cites W2158893164 @default.
- W2188085663 cites W2178299251 @default.
- W2188085663 cites W2271761891 @default.
- W2188085663 cites W2298785857 @default.
- W2188085663 cites W2409143526 @default.
- W2188085663 cites W2412484572 @default.
- W2188085663 hasPublicationYear "1996" @default.
- W2188085663 type Work @default.
- W2188085663 sameAs 2188085663 @default.
- W2188085663 citedByCount "0" @default.
- W2188085663 crossrefType "journal-article" @default.
- W2188085663 hasAuthorship W2188085663A5003544851 @default.
- W2188085663 hasAuthorship W2188085663A5018836634 @default.
- W2188085663 hasConcept C105922876 @default.
- W2188085663 hasConcept C111472728 @default.
- W2188085663 hasConcept C113174947 @default.
- W2188085663 hasConcept C126322002 @default.
- W2188085663 hasConcept C126838900 @default.
- W2188085663 hasConcept C134306372 @default.
- W2188085663 hasConcept C138885662 @default.
- W2188085663 hasConcept C141071460 @default.
- W2188085663 hasConcept C153180895 @default.
- W2188085663 hasConcept C154945302 @default.
- W2188085663 hasConcept C2777714996 @default.
- W2188085663 hasConcept C33923547 @default.
- W2188085663 hasConcept C41008148 @default.
- W2188085663 hasConcept C544519230 @default.
- W2188085663 hasConcept C58489278 @default.
- W2188085663 hasConcept C71924100 @default.
- W2188085663 hasConcept C75553542 @default.
- W2188085663 hasConcept C89600930 @default.
- W2188085663 hasConceptScore W2188085663C105922876 @default.
- W2188085663 hasConceptScore W2188085663C111472728 @default.
- W2188085663 hasConceptScore W2188085663C113174947 @default.
- W2188085663 hasConceptScore W2188085663C126322002 @default.
- W2188085663 hasConceptScore W2188085663C126838900 @default.
- W2188085663 hasConceptScore W2188085663C134306372 @default.
- W2188085663 hasConceptScore W2188085663C138885662 @default.
- W2188085663 hasConceptScore W2188085663C141071460 @default.
- W2188085663 hasConceptScore W2188085663C153180895 @default.
- W2188085663 hasConceptScore W2188085663C154945302 @default.
- W2188085663 hasConceptScore W2188085663C2777714996 @default.
- W2188085663 hasConceptScore W2188085663C33923547 @default.
- W2188085663 hasConceptScore W2188085663C41008148 @default.
- W2188085663 hasConceptScore W2188085663C544519230 @default.
- W2188085663 hasConceptScore W2188085663C58489278 @default.
- W2188085663 hasConceptScore W2188085663C71924100 @default.
- W2188085663 hasConceptScore W2188085663C75553542 @default.
- W2188085663 hasConceptScore W2188085663C89600930 @default.
- W2188085663 hasLocation W21880856631 @default.
- W2188085663 hasOpenAccess W2188085663 @default.
- W2188085663 hasPrimaryLocation W21880856631 @default.
- W2188085663 hasRelatedWork W1492789543 @default.
- W2188085663 hasRelatedWork W1981842254 @default.
- W2188085663 hasRelatedWork W1982474574 @default.
- W2188085663 hasRelatedWork W1988977196 @default.
- W2188085663 hasRelatedWork W1994262462 @default.
- W2188085663 hasRelatedWork W1994647852 @default.
- W2188085663 hasRelatedWork W1997470200 @default.
- W2188085663 hasRelatedWork W2006467347 @default.
- W2188085663 hasRelatedWork W2014448939 @default.
- W2188085663 hasRelatedWork W2014629229 @default.
- W2188085663 hasRelatedWork W2019875104 @default.
- W2188085663 hasRelatedWork W2029859938 @default.
- W2188085663 hasRelatedWork W2049508426 @default.
- W2188085663 hasRelatedWork W2088796667 @default.
- W2188085663 hasRelatedWork W2101975343 @default.
- W2188085663 hasRelatedWork W2136057478 @default.
- W2188085663 hasRelatedWork W2390787218 @default.
- W2188085663 hasRelatedWork W3005430461 @default.
- W2188085663 hasRelatedWork W3005816250 @default.
- W2188085663 hasRelatedWork W629947 @default.
- W2188085663 isParatext "false" @default.
- W2188085663 isRetracted "false" @default.
- W2188085663 magId "2188085663" @default.
- W2188085663 workType "article" @default.