Matches in SemOpenAlex for { <https://semopenalex.org/work/W2188332904> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2188332904 endingPage "12" @default.
- W2188332904 startingPage "3" @default.
- W2188332904 abstract "Recently, credit scoring problems have come into prominence depending on growing the number of applicants. As known from literature, the traditional techniques are not sufficient to model this kind of problems accurately. For this reason, the researchers are still struggling to develop the novel techniques and improve the current ones to achieve better solutions. In this paper, credit scoring problem is handled by artificial neural networks (ANNs) because they provide flexible modeling procedure and superior performances in the nonlinear environments. However, the researchers mostly overlook some important requirements such as model complexity, overfitting and selection of optimization algorithm during training of ANNs. This paper presents an efficient procedure that allows estimating more robust credit scoring models by means of the information criteria and the early stopping approach based on the cross-validation technique. In the application section, ANNs are trained by various gradient based algorithms over German credit scoring data, and then their classification performances are compared with each other and logistic regression. According to results, the performance of ANNs is better than logistic regression." @default.
- W2188332904 created "2016-06-24" @default.
- W2188332904 creator A5019180588 @default.
- W2188332904 creator A5054083027 @default.
- W2188332904 date "2015-11-30" @default.
- W2188332904 modified "2023-09-23" @default.
- W2188332904 title "Artificial Neural Networks with Gradient Learning Algorithm for Credit Scoring" @default.
- W2188332904 cites W1554663460 @default.
- W2188332904 cites W1571671538 @default.
- W2188332904 cites W168788300 @default.
- W2188332904 cites W1981093066 @default.
- W2188332904 cites W1985546543 @default.
- W2188332904 cites W1995953281 @default.
- W2188332904 cites W2004076523 @default.
- W2188332904 cites W2005510983 @default.
- W2188332904 cites W2013953038 @default.
- W2188332904 cites W2018883128 @default.
- W2188332904 cites W2035908274 @default.
- W2188332904 cites W2037744768 @default.
- W2188332904 cites W2041724917 @default.
- W2188332904 cites W2049399010 @default.
- W2188332904 cites W2051812123 @default.
- W2188332904 cites W2059447090 @default.
- W2188332904 cites W2064954710 @default.
- W2188332904 cites W2065080511 @default.
- W2188332904 cites W2065385043 @default.
- W2188332904 cites W2089811952 @default.
- W2188332904 cites W2093829413 @default.
- W2188332904 cites W2102843519 @default.
- W2188332904 cites W2111174809 @default.
- W2188332904 cites W2135411679 @default.
- W2188332904 cites W2136492913 @default.
- W2188332904 cites W2145856394 @default.
- W2188332904 cites W2150394223 @default.
- W2188332904 cites W2157394313 @default.
- W2188332904 cites W2327613514 @default.
- W2188332904 cites W3029645440 @default.
- W2188332904 cites W3122651343 @default.
- W2188332904 cites W3124238945 @default.
- W2188332904 cites W99750892 @default.
- W2188332904 hasPublicationYear "2015" @default.
- W2188332904 type Work @default.
- W2188332904 sameAs 2188332904 @default.
- W2188332904 citedByCount "1" @default.
- W2188332904 countsByYear W21883329042019 @default.
- W2188332904 crossrefType "journal-article" @default.
- W2188332904 hasAuthorship W2188332904A5019180588 @default.
- W2188332904 hasAuthorship W2188332904A5054083027 @default.
- W2188332904 hasConcept C119857082 @default.
- W2188332904 hasConcept C124101348 @default.
- W2188332904 hasConcept C151956035 @default.
- W2188332904 hasConcept C154945302 @default.
- W2188332904 hasConcept C22019652 @default.
- W2188332904 hasConcept C41008148 @default.
- W2188332904 hasConcept C50644808 @default.
- W2188332904 hasConcept C5465570 @default.
- W2188332904 hasConcept C81917197 @default.
- W2188332904 hasConceptScore W2188332904C119857082 @default.
- W2188332904 hasConceptScore W2188332904C124101348 @default.
- W2188332904 hasConceptScore W2188332904C151956035 @default.
- W2188332904 hasConceptScore W2188332904C154945302 @default.
- W2188332904 hasConceptScore W2188332904C22019652 @default.
- W2188332904 hasConceptScore W2188332904C41008148 @default.
- W2188332904 hasConceptScore W2188332904C50644808 @default.
- W2188332904 hasConceptScore W2188332904C5465570 @default.
- W2188332904 hasConceptScore W2188332904C81917197 @default.
- W2188332904 hasIssue "2" @default.
- W2188332904 hasLocation W21883329041 @default.
- W2188332904 hasOpenAccess W2188332904 @default.
- W2188332904 hasPrimaryLocation W21883329041 @default.
- W2188332904 hasRelatedWork W1535957588 @default.
- W2188332904 hasRelatedWork W1825308287 @default.
- W2188332904 hasRelatedWork W18351248 @default.
- W2188332904 hasRelatedWork W1995953281 @default.
- W2188332904 hasRelatedWork W1996860168 @default.
- W2188332904 hasRelatedWork W2063656687 @default.
- W2188332904 hasRelatedWork W2082067642 @default.
- W2188332904 hasRelatedWork W2093829413 @default.
- W2188332904 hasRelatedWork W2135411679 @default.
- W2188332904 hasRelatedWork W2162028497 @default.
- W2188332904 hasRelatedWork W2204280171 @default.
- W2188332904 hasRelatedWork W2508445639 @default.
- W2188332904 hasRelatedWork W2740213967 @default.
- W2188332904 hasRelatedWork W2886931416 @default.
- W2188332904 hasRelatedWork W2904641778 @default.
- W2188332904 hasRelatedWork W3134289144 @default.
- W2188332904 hasRelatedWork W3165824573 @default.
- W2188332904 hasRelatedWork W3190685476 @default.
- W2188332904 hasRelatedWork W3203259065 @default.
- W2188332904 hasRelatedWork W1597070228 @default.
- W2188332904 hasVolume "44" @default.
- W2188332904 isParatext "false" @default.
- W2188332904 isRetracted "false" @default.
- W2188332904 magId "2188332904" @default.
- W2188332904 workType "article" @default.