Matches in SemOpenAlex for { <https://semopenalex.org/work/W2188432762> ?p ?o ?g. }
- W2188432762 abstract "Ihsan A. Akbar Being one of the fastest growing fields of engineering, wireless has gained the attention of researchers and commercial businesses all over the world. Extensive research is underway to improve the performance of existing systems and to introduce cutting edge wireless technologies that can make high speed wireless communications possible. The first part of this dissertation deals with discrete channel models that are used for simulating error traces produced by wireless channels. Most of the time, wireless channels have memory and we rely on discrete time Markov models to simulate them. The primary advantage of using these models is rapid experimentation and prototyping. Efficient estimation of the parameters of a Markov model (including its number of states) is important to reproducing and/or forecasting channel statistics accurately. Although the parameter estimation of Markov processes has been studied extensively, its order estimation problem has been addressed only recently. In this report, we investigate the existing order estimation techniques for Markov chains and hidden Markov models. Performance comparison with semi-hidden Markov models is also discussed. Error source modeling in slow and fast fading conditions is also considered in great detail. Cognitive Radio is an emerging technology in wireless communications that can improve the utilization of radio spectrum by incorporating some intelligence in its design. It can adapt with the environment and can change its particular transmission or reception parameters to execute its tasks without interfering with the licensed users. One problem that CR network usually faces is the difficulty in detecting and classifying its low power signal that is present in the environment. Most of the time traditional energy detection techniques fail to detect these signals because of their low SNRs. In the second part of this thesis, we address this problem by using higher order statistics of incoming signals and classifying them by using the pattern recognition capabilities of HMMs combined with cased-based learning approach. This dissertation also deals with dynamic spectrum allocation in cognitive radio using HMMs. CR networks that are capable of using frequency bands assigned to licensed users, apart from utilizing unlicensed bands such as UNII radio band or ISM band, are also called Licensed Band Cognitive Radios. In our novel work, the dynamic spectrum management or dynamic frequency allocation is performed by the help of HMM predictions. This work is based on the idea that if Markov models can accurately model spectrum usage patterns of different licensed users, then it should also correctly predict the spectrum holes and use these frequencies for its data transmission. Simulations have shown that HMMs prediction results are quite accurate and can help in avoiding CR interference with the primary licensed users and vice versa. At the same time, this helps in sending its data over these channels more reliably." @default.
- W2188432762 created "2016-06-24" @default.
- W2188432762 creator A5032257744 @default.
- W2188432762 date "2007-01-22" @default.
- W2188432762 modified "2023-09-26" @default.
- W2188432762 title "Statistical Analysis of Wireless Systems Using Markov Models" @default.
- W2188432762 cites W1513610530 @default.
- W2188432762 cites W1560013842 @default.
- W2188432762 cites W1579271636 @default.
- W2188432762 cites W1667165204 @default.
- W2188432762 cites W1823937713 @default.
- W2188432762 cites W1883186006 @default.
- W2188432762 cites W196871588 @default.
- W2188432762 cites W1970934692 @default.
- W2188432762 cites W1974573251 @default.
- W2188432762 cites W1978180598 @default.
- W2188432762 cites W1980551137 @default.
- W2188432762 cites W1990693325 @default.
- W2188432762 cites W1992488239 @default.
- W2188432762 cites W2004136788 @default.
- W2188432762 cites W2009647853 @default.
- W2188432762 cites W2010310716 @default.
- W2188432762 cites W2018742520 @default.
- W2188432762 cites W2020986654 @default.
- W2188432762 cites W2027952292 @default.
- W2188432762 cites W2029825515 @default.
- W2188432762 cites W2036488048 @default.
- W2188432762 cites W2046577860 @default.
- W2188432762 cites W2046758955 @default.
- W2188432762 cites W2048101164 @default.
- W2188432762 cites W2053807426 @default.
- W2188432762 cites W2056241566 @default.
- W2188432762 cites W2056339533 @default.
- W2188432762 cites W2056859449 @default.
- W2188432762 cites W2061992737 @default.
- W2188432762 cites W2062554530 @default.
- W2188432762 cites W2065890766 @default.
- W2188432762 cites W2071707134 @default.
- W2188432762 cites W2083951343 @default.
- W2188432762 cites W2086699924 @default.
- W2188432762 cites W2087686387 @default.
- W2188432762 cites W2089585021 @default.
- W2188432762 cites W2090608685 @default.
- W2188432762 cites W2093564354 @default.
- W2188432762 cites W2097994539 @default.
- W2188432762 cites W2099111195 @default.
- W2188432762 cites W2103625483 @default.
- W2188432762 cites W2106186328 @default.
- W2188432762 cites W2110305665 @default.
- W2188432762 cites W2111351108 @default.
- W2188432762 cites W2121011773 @default.
- W2188432762 cites W2123787973 @default.
- W2188432762 cites W2127229384 @default.
- W2188432762 cites W2128777897 @default.
- W2188432762 cites W2128978199 @default.
- W2188432762 cites W2130185419 @default.
- W2188432762 cites W2133565934 @default.
- W2188432762 cites W2137399261 @default.
- W2188432762 cites W2140766383 @default.
- W2188432762 cites W2144134437 @default.
- W2188432762 cites W2144369278 @default.
- W2188432762 cites W2145417574 @default.
- W2188432762 cites W2151946103 @default.
- W2188432762 cites W2153090463 @default.
- W2188432762 cites W2154511091 @default.
- W2188432762 cites W2155805386 @default.
- W2188432762 cites W2160294857 @default.
- W2188432762 cites W2164233625 @default.
- W2188432762 cites W2168078104 @default.
- W2188432762 cites W2169533279 @default.
- W2188432762 cites W2181683968 @default.
- W2188432762 cites W2187664463 @default.
- W2188432762 cites W227146048 @default.
- W2188432762 cites W2587434085 @default.
- W2188432762 cites W2610857016 @default.
- W2188432762 cites W2751862591 @default.
- W2188432762 cites W2797570932 @default.
- W2188432762 cites W2799087070 @default.
- W2188432762 cites W337558160 @default.
- W2188432762 cites W586760411 @default.
- W2188432762 hasPublicationYear "2007" @default.
- W2188432762 type Work @default.
- W2188432762 sameAs 2188432762 @default.
- W2188432762 citedByCount "5" @default.
- W2188432762 countsByYear W21884327622012 @default.
- W2188432762 countsByYear W21884327622015 @default.
- W2188432762 crossrefType "dissertation" @default.
- W2188432762 hasAuthorship W2188432762A5032257744 @default.
- W2188432762 hasConcept C105795698 @default.
- W2188432762 hasConcept C108037233 @default.
- W2188432762 hasConcept C113775141 @default.
- W2188432762 hasConcept C119857082 @default.
- W2188432762 hasConcept C127162648 @default.
- W2188432762 hasConcept C149946192 @default.
- W2188432762 hasConcept C154945302 @default.
- W2188432762 hasConcept C159886148 @default.
- W2188432762 hasConcept C163836022 @default.
- W2188432762 hasConcept C23224414 @default.
- W2188432762 hasConcept C33923547 @default.
- W2188432762 hasConcept C41008148 @default.