Matches in SemOpenAlex for { <https://semopenalex.org/work/W2188649546> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2188649546 abstract "With the rapidly growing of real-time social media, like Twitter, many users share and discuss their interest topics through such platforms. Hashtag is a type of metadata tag which allows users to annotate their topics of tweets. For research usage, for example, hashtags can help the performance of event detection by observing the trend of hashtags. Although Twitter grows rapidly, hashtag growth is not as expected. Our dataset shows that there are less than 20% of all tweets containing hashtags. We think that it is caused by that most users may have no idea what hashtags are suitable for tweets they post. If we can recommend suitable hashtags to users, it can be one of the solutions to solve the problem of low usage rate of hashtag. Hashtag recommendation belongs to supervised learning problem. More labeled data for training the learning model can get higher performance in prediction. However, labeled data in hashtag recommendation is not so much due to low usage rate of hashtag. Thus, we want to exploit unlabeled data, i.e. non-hashtag tweets, to solve this problem. Now we have large amount of unlabeled data, but directly adding all non-hashtag tweets may not be helpful to train the model. To overcome this issue, we apply the weight-updating mechanisms to filter out the useless parts of non-hashtag tweets. These mechanisms also have to consider the temporal characteristics of hashtag due to the real-time nature of Twitter. The experimental results in this research show that adding non-hashtag tweets to extend original training data outperforms baseline methods which only exploit labeled data to train the model." @default.
- W2188649546 created "2016-06-24" @default.
- W2188649546 creator A5073045103 @default.
- W2188649546 creator A5090707085 @default.
- W2188649546 date "2015-10-01" @default.
- W2188649546 modified "2023-10-16" @default.
- W2188649546 title "LDA based semi-supervised learning from streaming short text" @default.
- W2188649546 cites W101058522 @default.
- W2188649546 cites W1553232534 @default.
- W2188649546 cites W1683269307 @default.
- W2188649546 cites W1969486090 @default.
- W2188649546 cites W1988790447 @default.
- W2188649546 cites W2018165284 @default.
- W2188649546 cites W2029807880 @default.
- W2188649546 cites W2049101093 @default.
- W2188649546 cites W2050099642 @default.
- W2188649546 cites W2052684427 @default.
- W2188649546 cites W2053968437 @default.
- W2188649546 cites W2054141820 @default.
- W2188649546 cites W2056797132 @default.
- W2188649546 cites W2077669887 @default.
- W2188649546 cites W2089349245 @default.
- W2188649546 cites W2102381086 @default.
- W2188649546 cites W2104894372 @default.
- W2188649546 cites W2118020653 @default.
- W2188649546 cites W2122838776 @default.
- W2188649546 cites W2141250202 @default.
- W2188649546 cites W4239510810 @default.
- W2188649546 cites W91766825 @default.
- W2188649546 doi "https://doi.org/10.1109/dsaa.2015.7344830" @default.
- W2188649546 hasPublicationYear "2015" @default.
- W2188649546 type Work @default.
- W2188649546 sameAs 2188649546 @default.
- W2188649546 citedByCount "5" @default.
- W2188649546 countsByYear W21886495462017 @default.
- W2188649546 countsByYear W21886495462018 @default.
- W2188649546 countsByYear W21886495462021 @default.
- W2188649546 crossrefType "proceedings-article" @default.
- W2188649546 hasAuthorship W2188649546A5073045103 @default.
- W2188649546 hasAuthorship W2188649546A5090707085 @default.
- W2188649546 hasConcept C119857082 @default.
- W2188649546 hasConcept C124101348 @default.
- W2188649546 hasConcept C136389625 @default.
- W2188649546 hasConcept C154945302 @default.
- W2188649546 hasConcept C204321447 @default.
- W2188649546 hasConcept C2777611316 @default.
- W2188649546 hasConcept C41008148 @default.
- W2188649546 hasConcept C50644808 @default.
- W2188649546 hasConceptScore W2188649546C119857082 @default.
- W2188649546 hasConceptScore W2188649546C124101348 @default.
- W2188649546 hasConceptScore W2188649546C136389625 @default.
- W2188649546 hasConceptScore W2188649546C154945302 @default.
- W2188649546 hasConceptScore W2188649546C204321447 @default.
- W2188649546 hasConceptScore W2188649546C2777611316 @default.
- W2188649546 hasConceptScore W2188649546C41008148 @default.
- W2188649546 hasConceptScore W2188649546C50644808 @default.
- W2188649546 hasLocation W21886495461 @default.
- W2188649546 hasOpenAccess W2188649546 @default.
- W2188649546 hasPrimaryLocation W21886495461 @default.
- W2188649546 hasRelatedWork W2981850339 @default.
- W2188649546 hasRelatedWork W3094076422 @default.
- W2188649546 hasRelatedWork W3095538999 @default.
- W2188649546 hasRelatedWork W3107474891 @default.
- W2188649546 hasRelatedWork W3162567751 @default.
- W2188649546 hasRelatedWork W3210156800 @default.
- W2188649546 hasRelatedWork W4220686584 @default.
- W2188649546 hasRelatedWork W4221088574 @default.
- W2188649546 hasRelatedWork W4226172683 @default.
- W2188649546 hasRelatedWork W4249546094 @default.
- W2188649546 isParatext "false" @default.
- W2188649546 isRetracted "false" @default.
- W2188649546 magId "2188649546" @default.
- W2188649546 workType "article" @default.