Matches in SemOpenAlex for { <https://semopenalex.org/work/W2188772783> ?p ?o ?g. }
- W2188772783 endingPage "2197" @default.
- W2188772783 startingPage "2185" @default.
- W2188772783 abstract "In this paper, a novel approach of multiple emotional multimedia tagging is proposed, which explicitly models the higher-order relations among emotions. First, multimedia features are extracted from the multimedia data. Second, a traditional multi-label classifier is used to obtain the measurements of the multi-emotion labels. Then, we propose a three-layer restricted Boltzmann machine (TRBM) model to capture the higher-order relations among emotion labels, as well as the relations between labels and measurements . Finally , the TRBM model is used to infer the samples' multi- emotion labels by combining the emotion measurements with the dependencies among multi- emotions . Experimental results on four databases demonstrate that our method is more effective than both feature -driven methods and current model-based methods, which capture the pairwise relations among labels by the Bayesian network (BN). Furthermore , the comparison of BN models and the proposed TRBM model verifies that the patterns captured by the latent units of TRBM contain not only all the dependencies captured by the BN but also many other dependencies that the BN cannot capture." @default.
- W2188772783 created "2016-06-24" @default.
- W2188772783 creator A5042241049 @default.
- W2188772783 creator A5057879516 @default.
- W2188772783 creator A5076346273 @default.
- W2188772783 creator A5077046519 @default.
- W2188772783 date "2015-12-01" @default.
- W2188772783 modified "2023-10-18" @default.
- W2188772783 title "Multiple Emotion Tagging for Multimedia Data by Exploiting High-Order Dependencies Among Emotions" @default.
- W2188772783 cites W146470039 @default.
- W2188772783 cites W1524416683 @default.
- W2188772783 cites W1575190232 @default.
- W2188772783 cites W1584524310 @default.
- W2188772783 cites W1675954175 @default.
- W2188772783 cites W1837618112 @default.
- W2188772783 cites W1973810917 @default.
- W2188772783 cites W1976044816 @default.
- W2188772783 cites W1997750113 @default.
- W2188772783 cites W2009627211 @default.
- W2188772783 cites W2011664673 @default.
- W2188772783 cites W2012651429 @default.
- W2188772783 cites W2017814585 @default.
- W2188772783 cites W2032298188 @default.
- W2188772783 cites W2032360374 @default.
- W2188772783 cites W2052684427 @default.
- W2188772783 cites W2063948594 @default.
- W2188772783 cites W2072578016 @default.
- W2188772783 cites W2079404915 @default.
- W2188772783 cites W2081323421 @default.
- W2188772783 cites W2083779588 @default.
- W2188772783 cites W2098287351 @default.
- W2188772783 cites W2099330554 @default.
- W2188772783 cites W2113317774 @default.
- W2188772783 cites W2114025269 @default.
- W2188772783 cites W2114920167 @default.
- W2188772783 cites W2114948194 @default.
- W2188772783 cites W2116001771 @default.
- W2188772783 cites W2117205264 @default.
- W2188772783 cites W2119466907 @default.
- W2188772783 cites W2120856140 @default.
- W2188772783 cites W2123459668 @default.
- W2188772783 cites W2129026672 @default.
- W2188772783 cites W2134422453 @default.
- W2188772783 cites W2137484796 @default.
- W2188772783 cites W2138648333 @default.
- W2188772783 cites W2138682483 @default.
- W2188772783 cites W2144459292 @default.
- W2188772783 cites W2144756000 @default.
- W2188772783 cites W2146104196 @default.
- W2188772783 cites W2156709807 @default.
- W2188772783 cites W2157845099 @default.
- W2188772783 cites W2158874389 @default.
- W2188772783 cites W2166912588 @default.
- W2188772783 cites W2168031754 @default.
- W2188772783 cites W2170120951 @default.
- W2188772783 cites W22807367 @default.
- W2188772783 cites W307400639 @default.
- W2188772783 cites W4235760674 @default.
- W2188772783 cites W66588809 @default.
- W2188772783 cites W2116336751 @default.
- W2188772783 doi "https://doi.org/10.1109/tmm.2015.2484966" @default.
- W2188772783 hasPublicationYear "2015" @default.
- W2188772783 type Work @default.
- W2188772783 sameAs 2188772783 @default.
- W2188772783 citedByCount "27" @default.
- W2188772783 countsByYear W21887727832017 @default.
- W2188772783 countsByYear W21887727832018 @default.
- W2188772783 countsByYear W21887727832019 @default.
- W2188772783 countsByYear W21887727832020 @default.
- W2188772783 countsByYear W21887727832021 @default.
- W2188772783 countsByYear W21887727832022 @default.
- W2188772783 countsByYear W21887727832023 @default.
- W2188772783 crossrefType "journal-article" @default.
- W2188772783 hasAuthorship W2188772783A5042241049 @default.
- W2188772783 hasAuthorship W2188772783A5057879516 @default.
- W2188772783 hasAuthorship W2188772783A5076346273 @default.
- W2188772783 hasAuthorship W2188772783A5077046519 @default.
- W2188772783 hasConcept C119857082 @default.
- W2188772783 hasConcept C12267149 @default.
- W2188772783 hasConcept C124101348 @default.
- W2188772783 hasConcept C138885662 @default.
- W2188772783 hasConcept C153180895 @default.
- W2188772783 hasConcept C154945302 @default.
- W2188772783 hasConcept C184898388 @default.
- W2188772783 hasConcept C192576344 @default.
- W2188772783 hasConcept C206310091 @default.
- W2188772783 hasConcept C2776401178 @default.
- W2188772783 hasConcept C2777438025 @default.
- W2188772783 hasConcept C2988148770 @default.
- W2188772783 hasConcept C33724603 @default.
- W2188772783 hasConcept C41008148 @default.
- W2188772783 hasConcept C41895202 @default.
- W2188772783 hasConcept C50644808 @default.
- W2188772783 hasConcept C52001869 @default.
- W2188772783 hasConcept C95623464 @default.
- W2188772783 hasConceptScore W2188772783C119857082 @default.
- W2188772783 hasConceptScore W2188772783C12267149 @default.
- W2188772783 hasConceptScore W2188772783C124101348 @default.