Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189195112> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2189195112 abstract "In order to achieve a higher efficiency with remote sensing-based monitoring approaches, classification instructions have to be comparable to allow a transfer to other regions and fractions of time. It is shown that on the basis of the standardisation of the radiometric, spectral, geometrical and temporal information of remote sensing data a standardised classification was developed, which fulfil these requirements. For twelve typical agricultural crop types spectral standard curves were produced and a hierarchically structured algorithm was designed. This procedure, targeted on the identification of crops on the field level, takes up the differentiation between the phenology of the crops, illustrated in the standard curves, and converts it into a hierarchical classification strategy. The algorithm covers three basics processing units. In the pre-processing the available Landsat data of a cultivation year are standardized, masked and joined to a multi-temporal NDVI dataset of the agricultural lots. To obtain the classification instruction the parameters describing the crops must be extracted from the standard curves for the acquisition dates. The hierarchical classification covers four pixelbased image analyses using the Parallelepiped method and a final majority analysis of the lots. The determining advantage of the procedure consists in the way of building the classification instruction. While this working step in conventional procedures requires the largest time extent, the expenditure in the presented approach reduces to fitting the points of recording time in into the standard year of phonological development of each culture. According to this adjustment the culture specific spectral description can be extract from the standard curve directly. A quality evaluation on the basis of confusion matrices for 1620ha cultivated area on 144 parcels for the cultivation year 1995 resulted in an overall accuracy of 65,7%. In comparison to it a conventional Maximum Likelihood classification of the same database reached a result of 72,8%. That shows that the approach without quality loss is justified in principle. However the time-saving design of classification instruction and the easily repeated application of the procedure are the essential advantages. Spectral standard curves in their present level of development can be regarded as basis of the method. Their quality will continuously increase by steady adding of new information. They can be regarded as continuously expandable information memory and should take up all classification-relevant information to the appropriate culture in standardized form. This will lead to a quality increase with the application of the procedure. The perfection of the standard curves is thus a central starting point for the advancement of the presented procedure. By the use of the NDVI this method is expandable on other, also new sensor systems." @default.
- W2189195112 created "2016-06-24" @default.
- W2189195112 creator A5037183880 @default.
- W2189195112 creator A5070855571 @default.
- W2189195112 date "2006-01-01" @default.
- W2189195112 modified "2023-09-27" @default.
- W2189195112 title "CROP CLASSIFICATION BASED ON SPECTRAL STANDARD CURVES" @default.
- W2189195112 cites W2002667357 @default.
- W2189195112 cites W2009987465 @default.
- W2189195112 cites W2011587316 @default.
- W2189195112 cites W2018490662 @default.
- W2189195112 cites W2126749436 @default.
- W2189195112 hasPublicationYear "2006" @default.
- W2189195112 type Work @default.
- W2189195112 sameAs 2189195112 @default.
- W2189195112 citedByCount "0" @default.
- W2189195112 crossrefType "journal-article" @default.
- W2189195112 hasAuthorship W2189195112A5037183880 @default.
- W2189195112 hasAuthorship W2189195112A5070855571 @default.
- W2189195112 hasConcept C116834253 @default.
- W2189195112 hasConcept C124101348 @default.
- W2189195112 hasConcept C153180895 @default.
- W2189195112 hasConcept C1549246 @default.
- W2189195112 hasConcept C154945302 @default.
- W2189195112 hasConcept C18903297 @default.
- W2189195112 hasConcept C202444582 @default.
- W2189195112 hasConcept C205649164 @default.
- W2189195112 hasConcept C2524010 @default.
- W2189195112 hasConcept C25989453 @default.
- W2189195112 hasConcept C2779788511 @default.
- W2189195112 hasConcept C33923547 @default.
- W2189195112 hasConcept C41008148 @default.
- W2189195112 hasConcept C45235069 @default.
- W2189195112 hasConcept C59822182 @default.
- W2189195112 hasConcept C62649853 @default.
- W2189195112 hasConcept C86803240 @default.
- W2189195112 hasConcept C9652623 @default.
- W2189195112 hasConceptScore W2189195112C116834253 @default.
- W2189195112 hasConceptScore W2189195112C124101348 @default.
- W2189195112 hasConceptScore W2189195112C153180895 @default.
- W2189195112 hasConceptScore W2189195112C1549246 @default.
- W2189195112 hasConceptScore W2189195112C154945302 @default.
- W2189195112 hasConceptScore W2189195112C18903297 @default.
- W2189195112 hasConceptScore W2189195112C202444582 @default.
- W2189195112 hasConceptScore W2189195112C205649164 @default.
- W2189195112 hasConceptScore W2189195112C2524010 @default.
- W2189195112 hasConceptScore W2189195112C25989453 @default.
- W2189195112 hasConceptScore W2189195112C2779788511 @default.
- W2189195112 hasConceptScore W2189195112C33923547 @default.
- W2189195112 hasConceptScore W2189195112C41008148 @default.
- W2189195112 hasConceptScore W2189195112C45235069 @default.
- W2189195112 hasConceptScore W2189195112C59822182 @default.
- W2189195112 hasConceptScore W2189195112C62649853 @default.
- W2189195112 hasConceptScore W2189195112C86803240 @default.
- W2189195112 hasConceptScore W2189195112C9652623 @default.
- W2189195112 hasLocation W21891951121 @default.
- W2189195112 hasOpenAccess W2189195112 @default.
- W2189195112 hasPrimaryLocation W21891951121 @default.
- W2189195112 hasRelatedWork W1506963712 @default.
- W2189195112 hasRelatedWork W1606161717 @default.
- W2189195112 hasRelatedWork W1971825153 @default.
- W2189195112 hasRelatedWork W2062409382 @default.
- W2189195112 hasRelatedWork W2166375892 @default.
- W2189195112 hasRelatedWork W2187742159 @default.
- W2189195112 hasRelatedWork W2550446298 @default.
- W2189195112 hasRelatedWork W2737474163 @default.
- W2189195112 hasRelatedWork W2782607342 @default.
- W2189195112 hasRelatedWork W2920149954 @default.
- W2189195112 hasRelatedWork W2922973918 @default.
- W2189195112 hasRelatedWork W2990146168 @default.
- W2189195112 hasRelatedWork W2845742188 @default.
- W2189195112 hasRelatedWork W2959185679 @default.
- W2189195112 hasRelatedWork W2965585107 @default.
- W2189195112 hasRelatedWork W3020344424 @default.
- W2189195112 hasRelatedWork W3110051503 @default.
- W2189195112 hasRelatedWork W3140001623 @default.
- W2189195112 hasRelatedWork W3144684285 @default.
- W2189195112 hasRelatedWork W3154249126 @default.
- W2189195112 isParatext "false" @default.
- W2189195112 isRetracted "false" @default.
- W2189195112 magId "2189195112" @default.
- W2189195112 workType "article" @default.