Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189355247> ?p ?o ?g. }
- W2189355247 endingPage "100" @default.
- W2189355247 startingPage "92" @default.
- W2189355247 abstract "Lamb muscle discrimination is important for the meat industry due to the different pricing of each type of muscle. In this paper, we combine hyperspectral imaging, operating in the wavelength range 380–1028 nm, with several machine learning algorithms to deal automatically with the classification of lamb muscles. More specifically, we study the discrimination of four different lamb muscles, namely, Longissimus dorsi, Psoas major, Semimembranosus and Semitendinosus from thirty lambs of Churra Galega Mirandesa breed. The objective of the paper is to determine the best method for muscle classification. In the experimental study we report an analysis of the performance of seven classifiers. We study their behavior when they are applied over the original data as well as over the data pre-processed using Principal Component Analysis (PCA) to reduce the dimensionality of the problem. The seven classifiers used to differentiate the muscle types are two Artificial Neural Networks, namely the linear Least Mean Squares (LMS) classifier and the Multilayer Perceptron with Scaled Conjugate Gradient (MLP-SCG), two Support Vector Machines (SVM), namely the ν SVM and the SVM trained with Sequential Minimal Optimization (SMO), the Logistic Regression (LR), the Center Based Nearest Neighbor classifier and the Linear Discriminant Analysis. The best result, determined using a leave-one-animal-out scheme, is provided by the linear LMS classifier using the original data, since it correctly classifies 96.67% of the samples. The LR, the MLP-SCG using original data and the SVM trained with SMO on data preprocessed with PCA are also suitable techniques to tackle the lamb muscle classification problem." @default.
- W2189355247 created "2016-06-24" @default.
- W2189355247 creator A5005023179 @default.
- W2189355247 creator A5008307290 @default.
- W2189355247 creator A5018271540 @default.
- W2189355247 creator A5027737844 @default.
- W2189355247 creator A5031794649 @default.
- W2189355247 creator A5045527050 @default.
- W2189355247 creator A5052728277 @default.
- W2189355247 creator A5056052406 @default.
- W2189355247 creator A5080128396 @default.
- W2189355247 date "2016-04-01" @default.
- W2189355247 modified "2023-09-28" @default.
- W2189355247 title "Lamb muscle discrimination using hyperspectral imaging: Comparison of various machine learning algorithms" @default.
- W2189355247 cites W1970940160 @default.
- W2189355247 cites W1973128549 @default.
- W2189355247 cites W1977355946 @default.
- W2189355247 cites W1995826367 @default.
- W2189355247 cites W2001619934 @default.
- W2189355247 cites W2024277145 @default.
- W2189355247 cites W2034778619 @default.
- W2189355247 cites W2046653646 @default.
- W2189355247 cites W2051812123 @default.
- W2189355247 cites W2065084513 @default.
- W2189355247 cites W2067903825 @default.
- W2189355247 cites W2089468765 @default.
- W2189355247 cites W2093513190 @default.
- W2189355247 cites W2100281586 @default.
- W2189355247 cites W2105429025 @default.
- W2189355247 cites W2106393550 @default.
- W2189355247 cites W2116146912 @default.
- W2189355247 cites W2116424792 @default.
- W2189355247 cites W2150644038 @default.
- W2189355247 cites W2161920802 @default.
- W2189355247 cites W2294131262 @default.
- W2189355247 cites W3099859933 @default.
- W2189355247 cites W4239510810 @default.
- W2189355247 cites W4240093485 @default.
- W2189355247 cites W4244238212 @default.
- W2189355247 doi "https://doi.org/10.1016/j.jfoodeng.2015.11.024" @default.
- W2189355247 hasPublicationYear "2016" @default.
- W2189355247 type Work @default.
- W2189355247 sameAs 2189355247 @default.
- W2189355247 citedByCount "46" @default.
- W2189355247 countsByYear W21893552472016 @default.
- W2189355247 countsByYear W21893552472017 @default.
- W2189355247 countsByYear W21893552472018 @default.
- W2189355247 countsByYear W21893552472019 @default.
- W2189355247 countsByYear W21893552472020 @default.
- W2189355247 countsByYear W21893552472021 @default.
- W2189355247 countsByYear W21893552472022 @default.
- W2189355247 countsByYear W21893552472023 @default.
- W2189355247 crossrefType "journal-article" @default.
- W2189355247 hasAuthorship W2189355247A5005023179 @default.
- W2189355247 hasAuthorship W2189355247A5008307290 @default.
- W2189355247 hasAuthorship W2189355247A5018271540 @default.
- W2189355247 hasAuthorship W2189355247A5027737844 @default.
- W2189355247 hasAuthorship W2189355247A5031794649 @default.
- W2189355247 hasAuthorship W2189355247A5045527050 @default.
- W2189355247 hasAuthorship W2189355247A5052728277 @default.
- W2189355247 hasAuthorship W2189355247A5056052406 @default.
- W2189355247 hasAuthorship W2189355247A5080128396 @default.
- W2189355247 hasConcept C11413529 @default.
- W2189355247 hasConcept C119857082 @default.
- W2189355247 hasConcept C12267149 @default.
- W2189355247 hasConcept C153180895 @default.
- W2189355247 hasConcept C154945302 @default.
- W2189355247 hasConcept C159078339 @default.
- W2189355247 hasConcept C179717631 @default.
- W2189355247 hasConcept C27438332 @default.
- W2189355247 hasConcept C33923547 @default.
- W2189355247 hasConcept C41008148 @default.
- W2189355247 hasConcept C50644808 @default.
- W2189355247 hasConcept C69738355 @default.
- W2189355247 hasConcept C95623464 @default.
- W2189355247 hasConceptScore W2189355247C11413529 @default.
- W2189355247 hasConceptScore W2189355247C119857082 @default.
- W2189355247 hasConceptScore W2189355247C12267149 @default.
- W2189355247 hasConceptScore W2189355247C153180895 @default.
- W2189355247 hasConceptScore W2189355247C154945302 @default.
- W2189355247 hasConceptScore W2189355247C159078339 @default.
- W2189355247 hasConceptScore W2189355247C179717631 @default.
- W2189355247 hasConceptScore W2189355247C27438332 @default.
- W2189355247 hasConceptScore W2189355247C33923547 @default.
- W2189355247 hasConceptScore W2189355247C41008148 @default.
- W2189355247 hasConceptScore W2189355247C50644808 @default.
- W2189355247 hasConceptScore W2189355247C69738355 @default.
- W2189355247 hasConceptScore W2189355247C95623464 @default.
- W2189355247 hasFunder F4320323737 @default.
- W2189355247 hasLocation W21893552471 @default.
- W2189355247 hasOpenAccess W2189355247 @default.
- W2189355247 hasPrimaryLocation W21893552471 @default.
- W2189355247 hasRelatedWork W1585144779 @default.
- W2189355247 hasRelatedWork W1967009489 @default.
- W2189355247 hasRelatedWork W2052589448 @default.
- W2189355247 hasRelatedWork W2102035376 @default.
- W2189355247 hasRelatedWork W2137358782 @default.
- W2189355247 hasRelatedWork W2142308737 @default.