Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189427415> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2189427415 abstract "Hyperspectral imaging is a relatively new method for identifying blood cells. Except for morphological and texture information in gray images, hyperspectral data contains a lot of spectral signatures which represent chemical analysis of a sample. Therefore, hyperspectrum has an advantage over digital color images due to spectral signatures. With these spectral and spatial features blood cells can be recognized and classified. Over 40 features are extracted from hyperspectral image sequence. These features include spectral pattern traits and similarity measures. To implement blood cell discrimination, a back propagation neural network (BPNN) is proposed in this paper. The connection weights of the BPNN were fixed through the training by a genetic algorithm (GA) which employed two adaptive mechanisms during the evolutional processes. Three-fold cross validation was applied to classify blood cells of given samples. Experimental results demonstrated that the classifier using a BPNN and an adaptive GA was effective. Finally, this paper also described a cursory investigation of the effect of spectral data volume on classification accuracy. Two compressed image series which can be viewed as multispectral series were obtained by systematic sampling from two original hyperspectral series, respectively. Compared to multispectral data, the hyperspectral data with high dimensionality achieved superior accuracy in recognizing blood cells, although requiring greater processing time due to the large amount of data dimension. KeywordsClassification; Blood Cell; Hyperspectral Imaging; BP Neural Network; Genetic Algorithm" @default.
- W2189427415 created "2016-06-24" @default.
- W2189427415 creator A5015269135 @default.
- W2189427415 creator A5054129534 @default.
- W2189427415 creator A5090964683 @default.
- W2189427415 date "2013-01-01" @default.
- W2189427415 modified "2023-09-22" @default.
- W2189427415 title "Blood Cells Classification Using Hyperspectral Imaging Technique" @default.
- W2189427415 cites W1529476013 @default.
- W2189427415 cites W155685019 @default.
- W2189427415 cites W1971941671 @default.
- W2189427415 cites W1973904960 @default.
- W2189427415 cites W2004205323 @default.
- W2189427415 cites W2006536226 @default.
- W2189427415 cites W2013776309 @default.
- W2189427415 cites W2014467703 @default.
- W2189427415 cites W2016427795 @default.
- W2189427415 cites W2022520652 @default.
- W2189427415 cites W2047556420 @default.
- W2189427415 cites W2075815193 @default.
- W2189427415 cites W2097863358 @default.
- W2189427415 cites W2101303489 @default.
- W2189427415 cites W2107224178 @default.
- W2189427415 cites W2117333179 @default.
- W2189427415 cites W2118061807 @default.
- W2189427415 cites W2164396308 @default.
- W2189427415 cites W2166271424 @default.
- W2189427415 cites W2171808325 @default.
- W2189427415 cites W2185942289 @default.
- W2189427415 cites W2375739047 @default.
- W2189427415 hasPublicationYear "2013" @default.
- W2189427415 type Work @default.
- W2189427415 sameAs 2189427415 @default.
- W2189427415 citedByCount "0" @default.
- W2189427415 crossrefType "journal-article" @default.
- W2189427415 hasAuthorship W2189427415A5015269135 @default.
- W2189427415 hasAuthorship W2189427415A5054129534 @default.
- W2189427415 hasAuthorship W2189427415A5090964683 @default.
- W2189427415 hasConcept C124101348 @default.
- W2189427415 hasConcept C153180895 @default.
- W2189427415 hasConcept C154945302 @default.
- W2189427415 hasConcept C159078339 @default.
- W2189427415 hasConcept C173163844 @default.
- W2189427415 hasConcept C41008148 @default.
- W2189427415 hasConcept C78168278 @default.
- W2189427415 hasConcept C95623464 @default.
- W2189427415 hasConceptScore W2189427415C124101348 @default.
- W2189427415 hasConceptScore W2189427415C153180895 @default.
- W2189427415 hasConceptScore W2189427415C154945302 @default.
- W2189427415 hasConceptScore W2189427415C159078339 @default.
- W2189427415 hasConceptScore W2189427415C173163844 @default.
- W2189427415 hasConceptScore W2189427415C41008148 @default.
- W2189427415 hasConceptScore W2189427415C78168278 @default.
- W2189427415 hasConceptScore W2189427415C95623464 @default.
- W2189427415 hasLocation W21894274151 @default.
- W2189427415 hasOpenAccess W2189427415 @default.
- W2189427415 hasPrimaryLocation W21894274151 @default.
- W2189427415 hasRelatedWork W1972207123 @default.
- W2189427415 hasRelatedWork W2006634605 @default.
- W2189427415 hasRelatedWork W2142339246 @default.
- W2189427415 hasRelatedWork W2290942691 @default.
- W2189427415 hasRelatedWork W2508513621 @default.
- W2189427415 hasRelatedWork W2546633136 @default.
- W2189427415 hasRelatedWork W2556460662 @default.
- W2189427415 hasRelatedWork W2802683946 @default.
- W2189427415 hasRelatedWork W2919732894 @default.
- W2189427415 hasRelatedWork W3181727745 @default.
- W2189427415 hasRelatedWork W3185961193 @default.
- W2189427415 hasRelatedWork W3200594062 @default.
- W2189427415 hasRelatedWork W3212590796 @default.
- W2189427415 hasRelatedWork W2184364701 @default.
- W2189427415 hasRelatedWork W2811547176 @default.
- W2189427415 hasRelatedWork W2819596316 @default.
- W2189427415 hasRelatedWork W2840787574 @default.
- W2189427415 hasRelatedWork W2959914430 @default.
- W2189427415 hasRelatedWork W2983307880 @default.
- W2189427415 hasRelatedWork W3097818164 @default.
- W2189427415 isParatext "false" @default.
- W2189427415 isRetracted "false" @default.
- W2189427415 magId "2189427415" @default.
- W2189427415 workType "article" @default.