Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189477749> ?p ?o ?g. }
- W2189477749 abstract "Quantitative risk analysis has become an integral part of large financial institutions. For banking and insurance enterprises, calculating the risk of future insolvency is mandatory per the regulatory directives such as Solvency and Basel. Performing risk analysis in these enterprises is difficult because the systems are highly complex and have a large number of uncertain variables. One form of risk analysis is in understanding the impact of extreme events that have a low chance of occurrence. The common methods used to estimate this extreme risk come from statistics and rare event simulation fields, and are based on Monte Carlo sampling. However, these sampling-based methods produce huge amounts of data. Therefore, the current implementations of risk analysis methods have scalability problems, particularly as they relate to complex systems with a very large number of variables. Monte Carlo DataBase with Risk analysis (MCDB-R) is a database system designed to facilitate scalable risk analysis on large datasets. MCDB-R combines sampling-based statistical methods and relational database technology for scalability on large uncertain data sets. Uncertainties in data are modeled as probabilistic distributions. A query on this uncertain data with probability distributions results in another probabilistic distribution called query-result distribution. For a given scenario defined by a query, analyzing its extreme events requires examining the upper or lower areas of the query-result distribution, where the events occur with very low probability. The specific methods used in MCDB-R for this analysis are: Gibbs sampling from statistics and cloning from rare-event simulation. These methods are used to efficiently sample from the low probability areas of the query-result distribution for the analysis. This dissertation discusses three improvements to the query processor in MCDB-R. The first technique provides a mechanism to move the sample generation (during the query execution) closer to the location where those samples are actually processed. Huge number of samples are generated during the query execution in MCDB-R, and this new mechanism reduces the sample movement in the memory hierarchy. Response time of the queries is improved significantly; sometimes by an order of magnitude, as shown in the experiments. MCDB-R employs a rejection algorithm at the core of its sampling-based risk analysis. For each uncertain variable, the rejection algorithm looks at a series of samples and discards them unless the sample fits a given constraint. Sometimes the constraints are so stringent that the rejection algorithm needs to process millions of samples before finding a good fit. In MCDB-R, an instance like this will require the same number of samples to be produced for all variables. In the second technique, this problematic instance is isolated from the rest of the query execution and then run separately to find an acceptable fit. The normal execution restarts after finding the required sample. Finally, adding an anti-join operator to the MCDB-R execution engine is explained. This new operator enables the system to execute subset-based queries with not-in and not-exists clauses. Performing an anti-join in this system is not trivial because of the stochastic nature of the data. The system does not know which samples are actually used until the end of the query execution. Two methods to implement the anti-join operator are discussed and then compared through experiments." @default.
- W2189477749 created "2016-06-24" @default.
- W2189477749 creator A5008335723 @default.
- W2189477749 creator A5028305547 @default.
- W2189477749 date "2012-01-01" @default.
- W2189477749 modified "2023-09-26" @default.
- W2189477749 title "Efficient query processing in mcdb-r" @default.
- W2189477749 cites W1486776102 @default.
- W2189477749 cites W1512485814 @default.
- W2189477749 cites W1557964602 @default.
- W2189477749 cites W1565494300 @default.
- W2189477749 cites W1600355623 @default.
- W2189477749 cites W1818890319 @default.
- W2189477749 cites W1962705364 @default.
- W2189477749 cites W1963853643 @default.
- W2189477749 cites W1966504569 @default.
- W2189477749 cites W1985093013 @default.
- W2189477749 cites W1986517320 @default.
- W2189477749 cites W1990391007 @default.
- W2189477749 cites W1992609556 @default.
- W2189477749 cites W202175650 @default.
- W2189477749 cites W2024400846 @default.
- W2189477749 cites W2029138824 @default.
- W2189477749 cites W2041763948 @default.
- W2189477749 cites W2044494469 @default.
- W2189477749 cites W2049882758 @default.
- W2189477749 cites W2055755416 @default.
- W2189477749 cites W2063066676 @default.
- W2189477749 cites W2066720893 @default.
- W2189477749 cites W2067818150 @default.
- W2189477749 cites W2078686663 @default.
- W2189477749 cites W2086128349 @default.
- W2189477749 cites W2088422262 @default.
- W2189477749 cites W2092819480 @default.
- W2189477749 cites W2105541078 @default.
- W2189477749 cites W2111811740 @default.
- W2189477749 cites W2114157818 @default.
- W2189477749 cites W2114258210 @default.
- W2189477749 cites W2116832440 @default.
- W2189477749 cites W2120207388 @default.
- W2189477749 cites W2120342618 @default.
- W2189477749 cites W2120688921 @default.
- W2189477749 cites W2123686039 @default.
- W2189477749 cites W2125402103 @default.
- W2189477749 cites W2125791539 @default.
- W2189477749 cites W2126880670 @default.
- W2189477749 cites W2127186572 @default.
- W2189477749 cites W2133246278 @default.
- W2189477749 cites W2137114813 @default.
- W2189477749 cites W2138271690 @default.
- W2189477749 cites W2140237757 @default.
- W2189477749 cites W2140453381 @default.
- W2189477749 cites W2142534468 @default.
- W2189477749 cites W2142930296 @default.
- W2189477749 cites W2143485006 @default.
- W2189477749 cites W2144810465 @default.
- W2189477749 cites W2146341620 @default.
- W2189477749 cites W2150731624 @default.
- W2189477749 cites W2151234409 @default.
- W2189477749 cites W2154368191 @default.
- W2189477749 cites W2156000104 @default.
- W2189477749 cites W2161123625 @default.
- W2189477749 cites W2164566630 @default.
- W2189477749 cites W2167911783 @default.
- W2189477749 cites W2168967034 @default.
- W2189477749 cites W2169463887 @default.
- W2189477749 cites W2169585110 @default.
- W2189477749 cites W2169600045 @default.
- W2189477749 cites W2291271463 @default.
- W2189477749 cites W2341510490 @default.
- W2189477749 cites W34142743 @default.
- W2189477749 cites W56918557 @default.
- W2189477749 cites W606728179 @default.
- W2189477749 hasPublicationYear "2012" @default.
- W2189477749 type Work @default.
- W2189477749 sameAs 2189477749 @default.
- W2189477749 citedByCount "0" @default.
- W2189477749 crossrefType "journal-article" @default.
- W2189477749 hasAuthorship W2189477749A5008335723 @default.
- W2189477749 hasAuthorship W2189477749A5028305547 @default.
- W2189477749 hasConcept C105795698 @default.
- W2189477749 hasConcept C106131492 @default.
- W2189477749 hasConcept C121332964 @default.
- W2189477749 hasConcept C124101348 @default.
- W2189477749 hasConcept C140779682 @default.
- W2189477749 hasConcept C149441793 @default.
- W2189477749 hasConcept C154945302 @default.
- W2189477749 hasConcept C19499675 @default.
- W2189477749 hasConcept C2779662365 @default.
- W2189477749 hasConcept C31972630 @default.
- W2189477749 hasConcept C33923547 @default.
- W2189477749 hasConcept C41008148 @default.
- W2189477749 hasConcept C48044578 @default.
- W2189477749 hasConcept C49937458 @default.
- W2189477749 hasConcept C62520636 @default.
- W2189477749 hasConcept C77088390 @default.
- W2189477749 hasConceptScore W2189477749C105795698 @default.
- W2189477749 hasConceptScore W2189477749C106131492 @default.
- W2189477749 hasConceptScore W2189477749C121332964 @default.
- W2189477749 hasConceptScore W2189477749C124101348 @default.