Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189478049> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2189478049 endingPage "14" @default.
- W2189478049 startingPage "1" @default.
- W2189478049 abstract "This paper discusses the construction of new<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>α</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M4><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>β</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, and<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M5><mml:mrow><mml:msub><mml:mrow><mml:mi>γ</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>. The sufficient conditions for the positivity are derived on one parameter<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M6><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>γ</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>while the other two parameters<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M7><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>α</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M8><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>β</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M9><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M10><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M11><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M12><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn mathvariant=normal>1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant=normal>1</mml:mn></mml:math>. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M13><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M14><mml:mi>f</mml:mi><mml:mfenced separators=|><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:mfenced><mml:mo>∈</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>3</mml:mn></mml:mrow></mml:msup><mml:mfenced open=[ close=] separators=|><mml:mrow><mml:msub><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>0</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>is also investigated in detail." @default.
- W2189478049 created "2016-06-24" @default.
- W2189478049 creator A5066504071 @default.
- W2189478049 creator A5079171037 @default.
- W2189478049 date "2016-01-01" @default.
- W2189478049 modified "2023-09-30" @default.
- W2189478049 title "Shape Preserving Interpolation Using<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=italic>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>Rational Cubic Spline" @default.
- W2189478049 cites W190515637 @default.
- W2189478049 cites W1971665624 @default.
- W2189478049 cites W1971977163 @default.
- W2189478049 cites W1982780888 @default.
- W2189478049 cites W1993857116 @default.
- W2189478049 cites W1994451508 @default.
- W2189478049 cites W2001707293 @default.
- W2189478049 cites W2003755366 @default.
- W2189478049 cites W2007794454 @default.
- W2189478049 cites W2019643974 @default.
- W2189478049 cites W2020077092 @default.
- W2189478049 cites W2055500400 @default.
- W2189478049 cites W2062142206 @default.
- W2189478049 cites W2085569878 @default.
- W2189478049 cites W2093607296 @default.
- W2189478049 cites W2096045964 @default.
- W2189478049 cites W2152180245 @default.
- W2189478049 cites W2186892105 @default.
- W2189478049 cites W2277856216 @default.
- W2189478049 cites W2333800937 @default.
- W2189478049 cites W2518439690 @default.
- W2189478049 cites W4252750203 @default.
- W2189478049 cites W4253941562 @default.
- W2189478049 doi "https://doi.org/10.1155/2016/4875358" @default.
- W2189478049 hasPublicationYear "2016" @default.
- W2189478049 type Work @default.
- W2189478049 sameAs 2189478049 @default.
- W2189478049 citedByCount "5" @default.
- W2189478049 countsByYear W21894780492017 @default.
- W2189478049 countsByYear W21894780492020 @default.
- W2189478049 countsByYear W21894780492021 @default.
- W2189478049 countsByYear W21894780492023 @default.
- W2189478049 crossrefType "journal-article" @default.
- W2189478049 hasAuthorship W2189478049A5066504071 @default.
- W2189478049 hasAuthorship W2189478049A5079171037 @default.
- W2189478049 hasBestOaLocation W21894780491 @default.
- W2189478049 hasConcept C11413529 @default.
- W2189478049 hasConcept C154945302 @default.
- W2189478049 hasConcept C41008148 @default.
- W2189478049 hasConceptScore W2189478049C11413529 @default.
- W2189478049 hasConceptScore W2189478049C154945302 @default.
- W2189478049 hasConceptScore W2189478049C41008148 @default.
- W2189478049 hasFunder F4320323380 @default.
- W2189478049 hasLocation W21894780491 @default.
- W2189478049 hasLocation W21894780492 @default.
- W2189478049 hasLocation W21894780493 @default.
- W2189478049 hasOpenAccess W2189478049 @default.
- W2189478049 hasPrimaryLocation W21894780491 @default.
- W2189478049 hasRelatedWork W2051487156 @default.
- W2189478049 hasRelatedWork W2073681303 @default.
- W2189478049 hasRelatedWork W2317200988 @default.
- W2189478049 hasRelatedWork W2358668433 @default.
- W2189478049 hasRelatedWork W2376932109 @default.
- W2189478049 hasRelatedWork W2382290278 @default.
- W2189478049 hasRelatedWork W2386767533 @default.
- W2189478049 hasRelatedWork W2390279801 @default.
- W2189478049 hasRelatedWork W2748952813 @default.
- W2189478049 hasRelatedWork W2899084033 @default.
- W2189478049 hasVolume "2016" @default.
- W2189478049 isParatext "false" @default.
- W2189478049 isRetracted "false" @default.
- W2189478049 magId "2189478049" @default.
- W2189478049 workType "article" @default.