Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189498051> ?p ?o ?g. }
- W2189498051 endingPage "318" @default.
- W2189498051 startingPage "299" @default.
- W2189498051 abstract "Abstract The identification of a magmatic source for granite-associated rare metal (W, Nb, Ta and Sn) mineralisation in metasediment-hosted quartz veins is often obscured by intense fluid–rock interactions which metamorphically overprinted most source signatures in the vein system. In order to address this recurrent metal sourcing problem, we have studied the metasediment-hosted tungsten-bearing quartz veins of the Nyakabingo deposit of the Karagwe-Ankole belt in Central Rwanda. The vein system (992 ± 2 Ma) is spatiotemporal related to the well-characterised B-rich, F-poor G4 leucogranite–pegmatite suite (986 ± 10 Ma to 975 ± 8 Ma) of the Gatumba–Gitarama area which culminated in Nb–Ta–Sn mineralisation. Muscovite in the Nyakabingo veins is significantly enriched in granitophile elements (Rb, Cs, W and Sn) and show alkali metal signatures equivalent to muscovite of less-differentiated pegmatite zones of the Gatumba–Gitarama area. Pegmatitic muscovite records a decrease in W content with increasing differentiation proxies (Rb and Cs), in contrast to the continuous enrichment of other high field strength elements (Nb and Ta) and Sn. This is an indication of a selective redistribution for W by fluid exsolution and fluid fractionation. Primary fluid inclusions in tourmaline of these less-differentiated pegmatites demonstrate the presence of medium to low saline, H2O–NaCl–KCl–MgCl2-complex salt (e.g. Rb, Cs) fluids which started to exsolve at the G4 granite–pegmatite transition stage. Laser ablation inductively coupled plasma mass-spectrometry shows significant tungsten enrichment in these fluid phases (∼5–500 ppm). Fractional crystallisation has been identified previously as the driving mechanism for the transition from G4 granites, less-differentiated biotite, biotite–muscovite towards muscovite pegmatites and eventually columbite–tantalite mineralised pegmatites. The general absence of tungsten mineralisation in this magmatic suite, including the most differentiated columbite–tantalite mineralised pegmatites of the Gatumba–Gitarama area, emphasises the efficiency of fluid saturation to extract crystal–melt incompatible tungsten from the differentiating melt phase. Fluid–melt–crystal partitioning calculations support the concept of a magmatic–hydrothermal fluid source for tungsten and constrain the range of permissible crystal–melt and fluid–melt partition coefficients together with realistic values for water solubility in the parental G4 granitic melt. Consequently, we propose that for highly-differentiated B-rich, F-poor granite systems fluid saturation started prior to or at the granite–pegmatite transition stage resulting in apical to peribatholitic tungsten veins systems that are paragenetically older than the final pegmatite stage." @default.
- W2189498051 created "2016-06-24" @default.
- W2189498051 creator A5017843978 @default.
- W2189498051 creator A5033602397 @default.
- W2189498051 creator A5034062563 @default.
- W2189498051 creator A5065820117 @default.
- W2189498051 date "2016-02-01" @default.
- W2189498051 modified "2023-10-09" @default.
- W2189498051 title "Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)" @default.
- W2189498051 cites W1579532931 @default.
- W2189498051 cites W1964191227 @default.
- W2189498051 cites W1966189692 @default.
- W2189498051 cites W1966258254 @default.
- W2189498051 cites W1966756346 @default.
- W2189498051 cites W1966808688 @default.
- W2189498051 cites W1967145871 @default.
- W2189498051 cites W1968187857 @default.
- W2189498051 cites W1968256284 @default.
- W2189498051 cites W1971975787 @default.
- W2189498051 cites W1972068865 @default.
- W2189498051 cites W1976073980 @default.
- W2189498051 cites W1979418505 @default.
- W2189498051 cites W1984759348 @default.
- W2189498051 cites W1984845126 @default.
- W2189498051 cites W1986202484 @default.
- W2189498051 cites W1989668477 @default.
- W2189498051 cites W1990333099 @default.
- W2189498051 cites W1993293013 @default.
- W2189498051 cites W1994021208 @default.
- W2189498051 cites W1995066725 @default.
- W2189498051 cites W1998581244 @default.
- W2189498051 cites W1999709060 @default.
- W2189498051 cites W1999862911 @default.
- W2189498051 cites W2002300074 @default.
- W2189498051 cites W2004304960 @default.
- W2189498051 cites W2009421219 @default.
- W2189498051 cites W2019413054 @default.
- W2189498051 cites W2031793064 @default.
- W2189498051 cites W2032386561 @default.
- W2189498051 cites W2032738554 @default.
- W2189498051 cites W2035829637 @default.
- W2189498051 cites W2038653717 @default.
- W2189498051 cites W2039323682 @default.
- W2189498051 cites W2044147861 @default.
- W2189498051 cites W2044537972 @default.
- W2189498051 cites W2045102922 @default.
- W2189498051 cites W2046828559 @default.
- W2189498051 cites W2047683885 @default.
- W2189498051 cites W2055291265 @default.
- W2189498051 cites W2062750466 @default.
- W2189498051 cites W2065940550 @default.
- W2189498051 cites W2069309542 @default.
- W2189498051 cites W2071914139 @default.
- W2189498051 cites W2072062807 @default.
- W2189498051 cites W2074463495 @default.
- W2189498051 cites W2082058782 @default.
- W2189498051 cites W2085787749 @default.
- W2189498051 cites W2086213893 @default.
- W2189498051 cites W2087290717 @default.
- W2189498051 cites W2093740880 @default.
- W2189498051 cites W2102927140 @default.
- W2189498051 cites W2111299008 @default.
- W2189498051 cites W2123973015 @default.
- W2189498051 cites W2130620795 @default.
- W2189498051 cites W2147443820 @default.
- W2189498051 cites W2148621633 @default.
- W2189498051 cites W2154045529 @default.
- W2189498051 cites W2162664689 @default.
- W2189498051 cites W2165541530 @default.
- W2189498051 cites W2165976294 @default.
- W2189498051 cites W2461226224 @default.
- W2189498051 cites W2473203016 @default.
- W2189498051 cites W2521601942 @default.
- W2189498051 cites W2611571865 @default.
- W2189498051 cites W34831761 @default.
- W2189498051 cites W438183401 @default.
- W2189498051 doi "https://doi.org/10.1016/j.gca.2015.11.020" @default.
- W2189498051 hasPublicationYear "2016" @default.
- W2189498051 type Work @default.
- W2189498051 sameAs 2189498051 @default.
- W2189498051 citedByCount "88" @default.
- W2189498051 countsByYear W21894980512017 @default.
- W2189498051 countsByYear W21894980512018 @default.
- W2189498051 countsByYear W21894980512019 @default.
- W2189498051 countsByYear W21894980512020 @default.
- W2189498051 countsByYear W21894980512021 @default.
- W2189498051 countsByYear W21894980512022 @default.
- W2189498051 countsByYear W21894980512023 @default.
- W2189498051 crossrefType "journal-article" @default.
- W2189498051 hasAuthorship W2189498051A5017843978 @default.
- W2189498051 hasAuthorship W2189498051A5033602397 @default.
- W2189498051 hasAuthorship W2189498051A5034062563 @default.
- W2189498051 hasAuthorship W2189498051A5065820117 @default.
- W2189498051 hasConcept C127313418 @default.
- W2189498051 hasConcept C151730666 @default.
- W2189498051 hasConcept C17409809 @default.
- W2189498051 hasConcept C178790620 @default.
- W2189498051 hasConcept C185592680 @default.