Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189862360> ?p ?o ?g. }
- W2189862360 endingPage "87" @default.
- W2189862360 startingPage "69" @default.
- W2189862360 abstract "In the data classification process involving higher order ANNs, it’s a herculean task to determine the optimal ANN classification model due to non-linear nature of real world datasets. To add to the woe, it is tedious to adjust the set of weights of ANNs by using appropriate learning algorithm to obtain better classification accuracy. In this paper, an improved variant of harmony search (HS), called self-adaptive harmony search (SAHS) along with gradient descent learning is used with functional link artificial neural network (FLANN) for the task of classification in data mining. Using its past experiences, SAHS adjusts the harmonies according to the maximum and minimum values in the current harmony memory. The powerful combination of this unique strategy of SAHS and searching capabilities of gradient descent search is used to obtain optimal set of weights for FLANN. The proposed method (SAHS–FLANN) is implemented in MATLAB and the results are contrasted with other alternatives (FLANN, GA based FLANN, PSO based FLANN, HS based FLANN, improved HS based FLANN and TLBO based FLANN). To illustrate its effectiveness, SAHS–FLANN is tested on various benchmark datasets from UCI machine learning repository by using 5-fold cross validation technique. Under the null-hypothesis, the proposed method is analyzed by using various statistical tests for statistical correctness of results. The performance of the SAHS–FLANN is found to be better and statistically significant in comparison with other alternatives. The SAHS–FLANN differs from HS–FLANN (HS based FLANN) by the elimination of constant parameters (bandwidth and pitch adjustment rate). Furthermore, it leads to the simplification of steps for the improvisation of weight-sets in IHS–FLANN (improved HS based FLANN) by incorporating adjustments of new weight-sets according to the weight-sets with maximum and minimum fitness." @default.
- W2189862360 created "2016-06-24" @default.
- W2189862360 creator A5019533978 @default.
- W2189862360 creator A5044832580 @default.
- W2189862360 creator A5078422400 @default.
- W2189862360 creator A5087542455 @default.
- W2189862360 date "2016-02-01" @default.
- W2189862360 modified "2023-09-22" @default.
- W2189862360 title "A self adaptive harmony search based functional link higher order ANN for non-linear data classification" @default.
- W2189862360 cites W148936622 @default.
- W2189862360 cites W1507170345 @default.
- W2189862360 cites W1520440889 @default.
- W2189862360 cites W1560461488 @default.
- W2189862360 cites W156516364 @default.
- W2189862360 cites W169902566 @default.
- W2189862360 cites W1965620617 @default.
- W2189862360 cites W1967824181 @default.
- W2189862360 cites W1968447126 @default.
- W2189862360 cites W1970573249 @default.
- W2189862360 cites W1971288868 @default.
- W2189862360 cites W1972969301 @default.
- W2189862360 cites W1977280468 @default.
- W2189862360 cites W1978122762 @default.
- W2189862360 cites W1993682096 @default.
- W2189862360 cites W1993885071 @default.
- W2189862360 cites W1999194769 @default.
- W2189862360 cites W1999284878 @default.
- W2189862360 cites W2008165846 @default.
- W2189862360 cites W2010133458 @default.
- W2189862360 cites W2011864101 @default.
- W2189862360 cites W2012638612 @default.
- W2189862360 cites W2014827425 @default.
- W2189862360 cites W2015278627 @default.
- W2189862360 cites W2016944307 @default.
- W2189862360 cites W2017760966 @default.
- W2189862360 cites W2017838688 @default.
- W2189862360 cites W2018516981 @default.
- W2189862360 cites W2021797534 @default.
- W2189862360 cites W2021929616 @default.
- W2189862360 cites W2028706875 @default.
- W2189862360 cites W2029921820 @default.
- W2189862360 cites W2036022564 @default.
- W2189862360 cites W2038718074 @default.
- W2189862360 cites W2040419678 @default.
- W2189862360 cites W2041246122 @default.
- W2189862360 cites W2041292378 @default.
- W2189862360 cites W2054458539 @default.
- W2189862360 cites W2065945697 @default.
- W2189862360 cites W2078196056 @default.
- W2189862360 cites W2078419218 @default.
- W2189862360 cites W2079024850 @default.
- W2189862360 cites W2082675763 @default.
- W2189862360 cites W2086434599 @default.
- W2189862360 cites W2092782467 @default.
- W2189862360 cites W2094353678 @default.
- W2189862360 cites W2102661468 @default.
- W2189862360 cites W2103437512 @default.
- W2189862360 cites W2113066515 @default.
- W2189862360 cites W2115012618 @default.
- W2189862360 cites W2122996548 @default.
- W2189862360 cites W2125146892 @default.
- W2189862360 cites W2126383530 @default.
- W2189862360 cites W2133218851 @default.
- W2189862360 cites W2135479649 @default.
- W2189862360 cites W2137089878 @default.
- W2189862360 cites W2142198388 @default.
- W2189862360 cites W2144584868 @default.
- W2189862360 cites W2145805672 @default.
- W2189862360 cites W2147885930 @default.
- W2189862360 cites W2152195021 @default.
- W2189862360 cites W2154341081 @default.
- W2189862360 cites W2155220711 @default.
- W2189862360 cites W2162974126 @default.
- W2189862360 cites W2165466912 @default.
- W2189862360 cites W2165546641 @default.
- W2189862360 cites W2166147164 @default.
- W2189862360 cites W2167251835 @default.
- W2189862360 cites W2168884668 @default.
- W2189862360 cites W2172055358 @default.
- W2189862360 cites W2172162610 @default.
- W2189862360 cites W2258321281 @default.
- W2189862360 cites W249982681 @default.
- W2189862360 cites W4241727697 @default.
- W2189862360 cites W4250503569 @default.
- W2189862360 cites W4250546562 @default.
- W2189862360 doi "https://doi.org/10.1016/j.neucom.2015.11.051" @default.
- W2189862360 hasPublicationYear "2016" @default.
- W2189862360 type Work @default.
- W2189862360 sameAs 2189862360 @default.
- W2189862360 citedByCount "34" @default.
- W2189862360 countsByYear W21898623602016 @default.
- W2189862360 countsByYear W21898623602017 @default.
- W2189862360 countsByYear W21898623602018 @default.
- W2189862360 countsByYear W21898623602019 @default.
- W2189862360 countsByYear W21898623602020 @default.
- W2189862360 countsByYear W21898623602021 @default.
- W2189862360 countsByYear W21898623602022 @default.
- W2189862360 countsByYear W21898623602023 @default.