Matches in SemOpenAlex for { <https://semopenalex.org/work/W218990739> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W218990739 abstract "A simple algorithm with time complexity O(M(n)log(n) 2 ) and space complexity O(n) for the evaluation of the hypergeometric series with rational coefficients is con- structed (M(n) being the complexity of integer multiplication). It is shown that this algorithm is suitable in practical informatics for constructive analogues of often used constants of analysis. Introduction. In this paper we construct an algorithm for the calculation of the approximate values of the hypergeometric series with rational coefficients whose imple- mentation is simple and which is quasi-linear in time and linear in space on the machine Schonhage (1). Such series are used for the calculation of some mathematical constants of analysis and of the values of elementary functions at rational points. Sch(FQLIN − TIME//LIN − SPACE) will be used to denote the class of algo- rithms which are computable on Schonhage and are quasi-linear in time and linear in space. The main feature of Schonhage is its ability to execute recursive calls of proce- dures. Quasi-linear means that the complexity function is bounded by O(nlog(n) k ) for some k. The main advantage of algorithms based on series expansions is the relative simplic- ity of both the algorithms and the analysis of their computational complexity. Besides we can compute all the most commonly used constants of analysis using series expan- sions. For calculations with a small number of digits after the binary (or decimal) point, series are more efficient than other methods because of the small constants in estima- tions of their computational complexity. Therefore such algorithms are important in computer science for practical applications. It is known (2) that linearly convergent hypergeometric series with rational coef- ficients can be calculated using the binary splitting method with time complexity O(M(n)(log(n)) 2 ) and space complexity O(nlog(n)) (where M(n) denotes the com- plexity of multiplication of n-bit integers). In recent publications, for example (3), algorithms based on a modified binary splitting method for the evaluation of linearly convergent hypergeometric series with time complexity O(M(n)(log(n)) 2 ) and space complexity O(n) are described." @default.
- W218990739 created "2016-06-24" @default.
- W218990739 creator A5008770317 @default.
- W218990739 date "2011-06-12" @default.
- W218990739 modified "2023-09-27" @default.
- W218990739 title "A simple algorithm for the evaluation of the hypergeometric series using quasi-linear time and linear space" @default.
- W218990739 cites W1545819195 @default.
- W218990739 cites W1581260235 @default.
- W218990739 cites W1587403552 @default.
- W218990739 cites W2125097461 @default.
- W218990739 hasPublicationYear "2011" @default.
- W218990739 type Work @default.
- W218990739 sameAs 218990739 @default.
- W218990739 citedByCount "0" @default.
- W218990739 crossrefType "posted-content" @default.
- W218990739 hasAuthorship W218990739A5008770317 @default.
- W218990739 hasConcept C111472728 @default.
- W218990739 hasConcept C11413529 @default.
- W218990739 hasConcept C118615104 @default.
- W218990739 hasConcept C138885662 @default.
- W218990739 hasConcept C14036430 @default.
- W218990739 hasConcept C143724316 @default.
- W218990739 hasConcept C151730666 @default.
- W218990739 hasConcept C176370821 @default.
- W218990739 hasConcept C197320386 @default.
- W218990739 hasConcept C199360897 @default.
- W218990739 hasConcept C202444582 @default.
- W218990739 hasConcept C2777027219 @default.
- W218990739 hasConcept C2780586882 @default.
- W218990739 hasConcept C28826006 @default.
- W218990739 hasConcept C33923547 @default.
- W218990739 hasConcept C41008148 @default.
- W218990739 hasConcept C75190567 @default.
- W218990739 hasConcept C78458016 @default.
- W218990739 hasConcept C86803240 @default.
- W218990739 hasConceptScore W218990739C111472728 @default.
- W218990739 hasConceptScore W218990739C11413529 @default.
- W218990739 hasConceptScore W218990739C118615104 @default.
- W218990739 hasConceptScore W218990739C138885662 @default.
- W218990739 hasConceptScore W218990739C14036430 @default.
- W218990739 hasConceptScore W218990739C143724316 @default.
- W218990739 hasConceptScore W218990739C151730666 @default.
- W218990739 hasConceptScore W218990739C176370821 @default.
- W218990739 hasConceptScore W218990739C197320386 @default.
- W218990739 hasConceptScore W218990739C199360897 @default.
- W218990739 hasConceptScore W218990739C202444582 @default.
- W218990739 hasConceptScore W218990739C2777027219 @default.
- W218990739 hasConceptScore W218990739C2780586882 @default.
- W218990739 hasConceptScore W218990739C28826006 @default.
- W218990739 hasConceptScore W218990739C33923547 @default.
- W218990739 hasConceptScore W218990739C41008148 @default.
- W218990739 hasConceptScore W218990739C75190567 @default.
- W218990739 hasConceptScore W218990739C78458016 @default.
- W218990739 hasConceptScore W218990739C86803240 @default.
- W218990739 hasLocation W2189907391 @default.
- W218990739 hasOpenAccess W218990739 @default.
- W218990739 hasPrimaryLocation W2189907391 @default.
- W218990739 hasRelatedWork W1165075496 @default.
- W218990739 hasRelatedWork W1527447383 @default.
- W218990739 hasRelatedWork W1758781646 @default.
- W218990739 hasRelatedWork W1979036815 @default.
- W218990739 hasRelatedWork W2005609859 @default.
- W218990739 hasRelatedWork W2072205301 @default.
- W218990739 hasRelatedWork W2111468049 @default.
- W218990739 hasRelatedWork W2112443971 @default.
- W218990739 hasRelatedWork W2126466445 @default.
- W218990739 hasRelatedWork W2166717942 @default.
- W218990739 hasRelatedWork W2486198464 @default.
- W218990739 hasRelatedWork W2568071471 @default.
- W218990739 hasRelatedWork W2811387437 @default.
- W218990739 hasRelatedWork W3106249893 @default.
- W218990739 hasRelatedWork W3142236053 @default.
- W218990739 hasRelatedWork W3204151990 @default.
- W218990739 hasRelatedWork W3205921098 @default.
- W218990739 hasRelatedWork W2186894090 @default.
- W218990739 hasRelatedWork W2338176737 @default.
- W218990739 hasRelatedWork W309589289 @default.
- W218990739 isParatext "false" @default.
- W218990739 isRetracted "false" @default.
- W218990739 magId "218990739" @default.
- W218990739 workType "article" @default.