Matches in SemOpenAlex for { <https://semopenalex.org/work/W2189969397> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2189969397 abstract "Nowadays, there is an increasing demand to provide real-time environment information such as air quality, noise level, traffic condition, etc. to citizens in urban areas for various purposes. The proliferation of sensor-equipped smartphones and the mobility of people are making Mobile Crowdsensing (MCS) an effective way to sense and collect information at a low deployment cost. In MCS, instead of deploying static sensors in urban areas, people with mobile devices play the role of mobile sensors to sense the information of their surroundings and the communication network (3G, WiFi, etc.) is used to transfer data for MCS applications. Typically, an MCS application (or task) not only requires each participant's mobile device to possess the capability of receiving sensing tasks, performing sensing and returning sensed results to a central server, it also requires to recruit participants, assign sensing tasks to participants, and collect sensed results that well represents the characteristics of the target sensing region. In order to recruit sufficient participants, the organizer of the MCS task should consider energy consumption caused by MCS applications for each individual participant and the privacy issues, further the organizer should give each participant a certain amount of incentives as encouragement. Further, in order to collect sensed results well representing the target region, the organizer needs to ensure the sensing data quality of the sensed results, e.g., the accuracy and the spatial-temporal coverage of the sensed results. With the energy consumption, privacy, incentives, and sensing data quality in mind, in this thesis we have studied four optimization problems of mobile crowdsensing and conducted following four research works: • EEMC - In this work, the MCS task is splitted into a sequence of sensing cycles, we assume each participant is given an equal amount of incentive for joining in each sensing cycle; further, given the target region of the MCS task, the MCS task aims at collecting an expected number of sensed results from the target region in each sensing cycle.Thus, in order to minimize the total incentive payments and the total energy consumption of the MCS task while meeting the predefined data collection goal, we propose EEMC which intends to select a minimal number of anonymous participants to join in each sensing cycle of the MCS task while ensuring an minimum number of participants returning sensed results. • EMC3 - In this work, we follow the same sensing cycles and incentives assumptions/settings from EEMC; however, given a target region consisting of a set of subareas, the MCS task in this work aims at collecting sensed results covering each subarea of the target region in each sensing cycle (namely full coverage constraint).Thus, in order to minimize the total incentive payments and the total energy consumption of the MCS task under the full coverage constraint, we propose EMC3 which intends to select a minimal number of anonymous participaNts to join in each sensing cycle of the MCS task while ensuring at least one participant returning sensed results from each subarea. • CrowdRecruiter - In this work, we assume each participant is given an equal amount of incentive for joining in all sensing cycles of the MCS task; further, given a target region consisting of a set of subareas, the MCS task aims at collecting sensed results from a predefined percentage of subareas in each sensing cycle (namely probabilistic coverage constraint).Thus, in order to minimize the total incentive payments the probabilistic coverage constraint, we propose CrowdRecruiter which intends to recruit a minimal number of participants for the whole MCS task while ensuring the selected participants returning sensed results from at least a predefined percentage of subareas in each sensing cycle. • CrowdTasker - In this work, we assume each participant is given a varied amount of incentives according to [...]" @default.
- W2189969397 created "2016-06-24" @default.
- W2189969397 creator A5081254155 @default.
- W2189969397 date "2015-01-22" @default.
- W2189969397 modified "2023-09-24" @default.
- W2189969397 title "Near-optimal mobile crowdsensing : design framework and algorithms" @default.
- W2189969397 hasPublicationYear "2015" @default.
- W2189969397 type Work @default.
- W2189969397 sameAs 2189969397 @default.
- W2189969397 citedByCount "0" @default.
- W2189969397 crossrefType "dissertation" @default.
- W2189969397 hasAuthorship W2189969397A5081254155 @default.
- W2189969397 hasConcept C105339364 @default.
- W2189969397 hasConcept C107457646 @default.
- W2189969397 hasConcept C111472728 @default.
- W2189969397 hasConcept C111919701 @default.
- W2189969397 hasConcept C119599485 @default.
- W2189969397 hasConcept C127413603 @default.
- W2189969397 hasConcept C138885662 @default.
- W2189969397 hasConcept C162324750 @default.
- W2189969397 hasConcept C175444787 @default.
- W2189969397 hasConcept C186967261 @default.
- W2189969397 hasConcept C201995342 @default.
- W2189969397 hasConcept C2779530757 @default.
- W2189969397 hasConcept C2780165032 @default.
- W2189969397 hasConcept C2780451532 @default.
- W2189969397 hasConcept C2780821482 @default.
- W2189969397 hasConcept C29122968 @default.
- W2189969397 hasConcept C38652104 @default.
- W2189969397 hasConcept C41008148 @default.
- W2189969397 hasConcept C79403827 @default.
- W2189969397 hasConceptScore W2189969397C105339364 @default.
- W2189969397 hasConceptScore W2189969397C107457646 @default.
- W2189969397 hasConceptScore W2189969397C111472728 @default.
- W2189969397 hasConceptScore W2189969397C111919701 @default.
- W2189969397 hasConceptScore W2189969397C119599485 @default.
- W2189969397 hasConceptScore W2189969397C127413603 @default.
- W2189969397 hasConceptScore W2189969397C138885662 @default.
- W2189969397 hasConceptScore W2189969397C162324750 @default.
- W2189969397 hasConceptScore W2189969397C175444787 @default.
- W2189969397 hasConceptScore W2189969397C186967261 @default.
- W2189969397 hasConceptScore W2189969397C201995342 @default.
- W2189969397 hasConceptScore W2189969397C2779530757 @default.
- W2189969397 hasConceptScore W2189969397C2780165032 @default.
- W2189969397 hasConceptScore W2189969397C2780451532 @default.
- W2189969397 hasConceptScore W2189969397C2780821482 @default.
- W2189969397 hasConceptScore W2189969397C29122968 @default.
- W2189969397 hasConceptScore W2189969397C38652104 @default.
- W2189969397 hasConceptScore W2189969397C41008148 @default.
- W2189969397 hasConceptScore W2189969397C79403827 @default.
- W2189969397 hasLocation W21899693971 @default.
- W2189969397 hasOpenAccess W2189969397 @default.
- W2189969397 hasPrimaryLocation W21899693971 @default.
- W2189969397 hasRelatedWork W2471528185 @default.
- W2189969397 hasRelatedWork W2545679544 @default.
- W2189969397 hasRelatedWork W2776147409 @default.
- W2189969397 hasRelatedWork W2787055779 @default.
- W2189969397 hasRelatedWork W2889522678 @default.
- W2189969397 hasRelatedWork W2891543718 @default.
- W2189969397 hasRelatedWork W2901667905 @default.
- W2189969397 hasRelatedWork W2903390442 @default.
- W2189969397 hasRelatedWork W2913595595 @default.
- W2189969397 hasRelatedWork W2917618590 @default.
- W2189969397 hasRelatedWork W2922548668 @default.
- W2189969397 hasRelatedWork W2946086687 @default.
- W2189969397 hasRelatedWork W2955300786 @default.
- W2189969397 hasRelatedWork W2981462552 @default.
- W2189969397 hasRelatedWork W2982574448 @default.
- W2189969397 hasRelatedWork W2999504299 @default.
- W2189969397 hasRelatedWork W3010324225 @default.
- W2189969397 hasRelatedWork W3092413484 @default.
- W2189969397 hasRelatedWork W3125279047 @default.
- W2189969397 hasRelatedWork W2956373536 @default.
- W2189969397 isParatext "false" @default.
- W2189969397 isRetracted "false" @default.
- W2189969397 magId "2189969397" @default.
- W2189969397 workType "dissertation" @default.