Matches in SemOpenAlex for { <https://semopenalex.org/work/W2191445856> ?p ?o ?g. }
- W2191445856 endingPage "210" @default.
- W2191445856 startingPage "198" @default.
- W2191445856 abstract "A self-adaptive multi-objective teaching-learning-based optimization (SA-MTLBO) is proposed in this paper. In SA-MTLBO, the learners can self-adaptively select the modes of learning according to their levels of knowledge in classroom. The excellent learners are more likely to choose the learner phase to enhance population diversity, and the common learners are tend to choose the teacher phase to improve the convergence ability of the algorithm. So learners at different levels choose appropriate modes of learning and carry out corresponding search function to efficiently enhance the performance of algorithm. To evaluate the effectiveness of the proposed algorithm, SA-MTLBO is firstly compared with other algorithms in twelve test problems. The results demonstrate that SA-MTLBO can generate Pareto optimal fronts with good convergence and distribution. Finally, SA-MTLBO is used to maximize the yields of ethylene, propylene, and butadiene of the naphtha pyrolysis process. The computational results of SA-MTLBO indicate that the operation of ethylene cracking furnace can be improved by increasing the yields of ethylene, propylene, and butadiene." @default.
- W2191445856 created "2016-06-24" @default.
- W2191445856 creator A5006822602 @default.
- W2191445856 creator A5042789966 @default.
- W2191445856 creator A5074315199 @default.
- W2191445856 date "2015-08-01" @default.
- W2191445856 modified "2023-10-14" @default.
- W2191445856 title "Self-adaptive multi-objective teaching-learning-based optimization and its application in ethylene cracking furnace operation optimization" @default.
- W2191445856 cites W1595159159 @default.
- W2191445856 cites W1966574952 @default.
- W2191445856 cites W1977873138 @default.
- W2191445856 cites W1980727424 @default.
- W2191445856 cites W1988902128 @default.
- W2191445856 cites W1989306251 @default.
- W2191445856 cites W1990110642 @default.
- W2191445856 cites W1998151312 @default.
- W2191445856 cites W1999284878 @default.
- W2191445856 cites W2001447205 @default.
- W2191445856 cites W2001599725 @default.
- W2191445856 cites W2003890325 @default.
- W2191445856 cites W2009435097 @default.
- W2191445856 cites W2011911735 @default.
- W2191445856 cites W2018300124 @default.
- W2191445856 cites W2020466329 @default.
- W2191445856 cites W2030121779 @default.
- W2191445856 cites W2035661050 @default.
- W2191445856 cites W2044056864 @default.
- W2191445856 cites W2046611948 @default.
- W2191445856 cites W2048882317 @default.
- W2191445856 cites W2057163815 @default.
- W2191445856 cites W2057418872 @default.
- W2191445856 cites W2058714938 @default.
- W2191445856 cites W2065431322 @default.
- W2191445856 cites W2067076610 @default.
- W2191445856 cites W2072435153 @default.
- W2191445856 cites W2082888448 @default.
- W2191445856 cites W2083281224 @default.
- W2191445856 cites W2088262534 @default.
- W2191445856 cites W2094340389 @default.
- W2191445856 cites W2098907614 @default.
- W2191445856 cites W2106334424 @default.
- W2191445856 cites W2116661285 @default.
- W2191445856 cites W2123497782 @default.
- W2191445856 cites W2125899728 @default.
- W2191445856 cites W2126105956 @default.
- W2191445856 cites W2129120446 @default.
- W2191445856 cites W2129608746 @default.
- W2191445856 cites W2137458524 @default.
- W2191445856 cites W2143381319 @default.
- W2191445856 cites W2143560894 @default.
- W2191445856 cites W2170766832 @default.
- W2191445856 cites W2261066338 @default.
- W2191445856 cites W2325285719 @default.
- W2191445856 cites W3151333979 @default.
- W2191445856 cites W796054469 @default.
- W2191445856 doi "https://doi.org/10.1016/j.chemolab.2015.05.015" @default.
- W2191445856 hasPublicationYear "2015" @default.
- W2191445856 type Work @default.
- W2191445856 sameAs 2191445856 @default.
- W2191445856 citedByCount "40" @default.
- W2191445856 countsByYear W21914458562015 @default.
- W2191445856 countsByYear W21914458562016 @default.
- W2191445856 countsByYear W21914458562017 @default.
- W2191445856 countsByYear W21914458562018 @default.
- W2191445856 countsByYear W21914458562019 @default.
- W2191445856 countsByYear W21914458562020 @default.
- W2191445856 countsByYear W21914458562021 @default.
- W2191445856 countsByYear W21914458562022 @default.
- W2191445856 countsByYear W21914458562023 @default.
- W2191445856 crossrefType "journal-article" @default.
- W2191445856 hasAuthorship W2191445856A5006822602 @default.
- W2191445856 hasAuthorship W2191445856A5042789966 @default.
- W2191445856 hasAuthorship W2191445856A5074315199 @default.
- W2191445856 hasConcept C111919701 @default.
- W2191445856 hasConcept C126255220 @default.
- W2191445856 hasConcept C134484671 @default.
- W2191445856 hasConcept C137635306 @default.
- W2191445856 hasConcept C144024400 @default.
- W2191445856 hasConcept C149923435 @default.
- W2191445856 hasConcept C159985019 @default.
- W2191445856 hasConcept C161790260 @default.
- W2191445856 hasConcept C162324750 @default.
- W2191445856 hasConcept C185592680 @default.
- W2191445856 hasConcept C192562407 @default.
- W2191445856 hasConcept C2777303404 @default.
- W2191445856 hasConcept C2778597550 @default.
- W2191445856 hasConcept C2908647359 @default.
- W2191445856 hasConcept C33923547 @default.
- W2191445856 hasConcept C41008148 @default.
- W2191445856 hasConcept C50522688 @default.
- W2191445856 hasConcept C55493867 @default.
- W2191445856 hasConcept C58396970 @default.
- W2191445856 hasConcept C98045186 @default.
- W2191445856 hasConceptScore W2191445856C111919701 @default.
- W2191445856 hasConceptScore W2191445856C126255220 @default.
- W2191445856 hasConceptScore W2191445856C134484671 @default.
- W2191445856 hasConceptScore W2191445856C137635306 @default.
- W2191445856 hasConceptScore W2191445856C144024400 @default.