Matches in SemOpenAlex for { <https://semopenalex.org/work/W2191950900> ?p ?o ?g. }
- W2191950900 endingPage "167" @default.
- W2191950900 startingPage "150" @default.
- W2191950900 abstract "High precision Sm−Nd isotopic analyses have been completed on a suite of 11 martian basaltic meteorites in order to better constrain the age of silicate differentiation on Mars associated with the formation of their mantle sources. These data are used to evaluate the merits and disadvantages of various mathematical approaches that have been employed in previous work on this topic. Ages determined from the Sm−Nd isotopic systematics of individual samples are strongly dependent on the assumed Nd isotopic composition of the bulk planet. This assumption is problematic given differences observed between the Nd isotopic composition of Earth and chondritic meteorites and the fact that these materials are both commonly used to represent bulk planetary Nd isotopic compositions. Ages determined from the slope of 146Sm−142Nd whole rock isochrons are not dependent on the assumed 142Nd/144Nd ratio of the planet, but require the sample suite to be derived from complementary, contemporaneously-formed reservoirs. In this work, we present a mathematical expression that defines the age of formation of the source regions of such a suite of samples that is based solely on the slope of a 143Nd−142Nd whole rock isochron and is also independent of any a priori assumptions regarding the bulk isotopic composition of the planet. This expression is also applicable to mineral isochrons and has been used to successfully calculate 143Nd−142Nd model crystallization ages of early refractory solids as well as lunar samples. This permits ages to be obtained using only Nd isotopic measurements without the need for 147Sm/144Nd isotope dilution determinations. When used in conjunction with high-precision Nd isotopic measurements completed on martian meteorites this expression yields an age of formation of the martian basaltic meteorite source regions of 4504 ± 6 Ma. Because the Sm−Nd model ages for the formation of martian source regions are commonly interpreted to record the age at which large scale mantle reservoirs formed during planetary differentiation associated with magma ocean solidification, the age determined here implies that magma ocean solidification occurred several tens of millions of years after the beginning of the Solar System. Recent thermal models, however, suggest that Mars-sized bodies cool rapidly in less than ∼5 Ma after accretion ceases, even in the presence of a thick atmosphere. Assuming these models are correct, an extended period of accretion is necessary to provide a mechanism to keep portions of the martian mantle partially molten until 4504 Ma. Late accretional heating of Mars could either be associated with protracted accretion occurring at a quasi-steady state or alternatively be associated with a late giant impact. If this scenario is correct, then accretion of Mars-sized bodies takes up to 60 Ma and is likely to be contemporaneous with the core formation and possibly the onset of silicate differentiation. This further challenges the concept that isotopic equilibrium is attained during primordial evolution of planets, and may help to account for geochemical evidence implying addition of material into planetary interiors after core formation was completed." @default.
- W2191950900 created "2016-06-24" @default.
- W2191950900 creator A5040418752 @default.
- W2191950900 creator A5076034169 @default.
- W2191950900 creator A5086557456 @default.
- W2191950900 date "2016-02-01" @default.
- W2191950900 modified "2023-10-03" @default.
- W2191950900 title "Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites" @default.
- W2191950900 cites W1577889576 @default.
- W2191950900 cites W1966022977 @default.
- W2191950900 cites W1967230238 @default.
- W2191950900 cites W1968731999 @default.
- W2191950900 cites W1978234494 @default.
- W2191950900 cites W1979696967 @default.
- W2191950900 cites W1980467081 @default.
- W2191950900 cites W1981353386 @default.
- W2191950900 cites W1986242722 @default.
- W2191950900 cites W1987567821 @default.
- W2191950900 cites W1990823670 @default.
- W2191950900 cites W1995800828 @default.
- W2191950900 cites W1997661031 @default.
- W2191950900 cites W2000067065 @default.
- W2191950900 cites W2000313707 @default.
- W2191950900 cites W2002703133 @default.
- W2191950900 cites W2007304116 @default.
- W2191950900 cites W2010675199 @default.
- W2191950900 cites W2012566794 @default.
- W2191950900 cites W2013173303 @default.
- W2191950900 cites W2014722120 @default.
- W2191950900 cites W2016910757 @default.
- W2191950900 cites W2024341329 @default.
- W2191950900 cites W2025433765 @default.
- W2191950900 cites W2030051630 @default.
- W2191950900 cites W2032929802 @default.
- W2191950900 cites W2033223950 @default.
- W2191950900 cites W2033620099 @default.
- W2191950900 cites W2037503004 @default.
- W2191950900 cites W2038430863 @default.
- W2191950900 cites W2046518383 @default.
- W2191950900 cites W2052986534 @default.
- W2191950900 cites W2058061343 @default.
- W2191950900 cites W2059027328 @default.
- W2191950900 cites W2059399562 @default.
- W2191950900 cites W2059610826 @default.
- W2191950900 cites W2064144633 @default.
- W2191950900 cites W2071523101 @default.
- W2191950900 cites W2072375031 @default.
- W2191950900 cites W2073182405 @default.
- W2191950900 cites W2074640944 @default.
- W2191950900 cites W2076566162 @default.
- W2191950900 cites W2078321309 @default.
- W2191950900 cites W2090437374 @default.
- W2191950900 cites W2092296354 @default.
- W2191950900 cites W2099711290 @default.
- W2191950900 cites W2105330624 @default.
- W2191950900 cites W2106808574 @default.
- W2191950900 cites W2116880011 @default.
- W2191950900 cites W2127662755 @default.
- W2191950900 cites W2136705981 @default.
- W2191950900 cites W2138575508 @default.
- W2191950900 cites W2140242855 @default.
- W2191950900 cites W2148939411 @default.
- W2191950900 cites W2152968657 @default.
- W2191950900 cites W2161151076 @default.
- W2191950900 cites W2162677030 @default.
- W2191950900 cites W2564504974 @default.
- W2191950900 doi "https://doi.org/10.1016/j.gca.2015.12.002" @default.
- W2191950900 hasPublicationYear "2016" @default.
- W2191950900 type Work @default.
- W2191950900 sameAs 2191950900 @default.
- W2191950900 citedByCount "64" @default.
- W2191950900 countsByYear W21919509002016 @default.
- W2191950900 countsByYear W21919509002017 @default.
- W2191950900 countsByYear W21919509002018 @default.
- W2191950900 countsByYear W21919509002019 @default.
- W2191950900 countsByYear W21919509002020 @default.
- W2191950900 countsByYear W21919509002021 @default.
- W2191950900 countsByYear W21919509002022 @default.
- W2191950900 countsByYear W21919509002023 @default.
- W2191950900 crossrefType "journal-article" @default.
- W2191950900 hasAuthorship W2191950900A5040418752 @default.
- W2191950900 hasAuthorship W2191950900A5076034169 @default.
- W2191950900 hasAuthorship W2191950900A5086557456 @default.
- W2191950900 hasBestOaLocation W21919509001 @default.
- W2191950900 hasConcept C116862484 @default.
- W2191950900 hasConcept C11872896 @default.
- W2191950900 hasConcept C121332964 @default.
- W2191950900 hasConcept C127313418 @default.
- W2191950900 hasConcept C130635790 @default.
- W2191950900 hasConcept C151730666 @default.
- W2191950900 hasConcept C154010619 @default.
- W2191950900 hasConcept C161509811 @default.
- W2191950900 hasConcept C17409809 @default.
- W2191950900 hasConcept C199289684 @default.
- W2191950900 hasConcept C2778600265 @default.
- W2191950900 hasConcept C44870925 @default.
- W2191950900 hasConcept C46381822 @default.
- W2191950900 hasConcept C487381 @default.