Matches in SemOpenAlex for { <https://semopenalex.org/work/W2191962456> ?p ?o ?g. }
- W2191962456 endingPage "431" @default.
- W2191962456 startingPage "417" @default.
- W2191962456 abstract "In this paper, we consider the dictionary learning problem for the sparse analysis model. A novel algorithm is proposed by adapting the simultaneous codeword optimization (SimCO) algorithm, based on the sparse synthesis model, to the sparse analysis model. This algorithm assumes that the analysis dictionary contains unit l2-norm atoms and learns the dictionary by optimization on manifolds. This framework allows multiple dictionary atoms to be updated simultaneously in each iteration. However, similar to several existing analysis dictionary learning algorithms, dictionaries learned by the proposed algorithm may contain similar atoms, leading to a degenerate (coherent) dictionary. To address this problem, we also consider restricting the coherence of the learned dictionary and propose Incoherent Analysis SimCO by introducing an atom decorrelation step following the update of the dictionary. We demonstrate the competitive performance of the proposed algorithms using experiments with synthetic data and image denoising as compared with existing algorithms." @default.
- W2191962456 created "2016-06-24" @default.
- W2191962456 creator A5027701388 @default.
- W2191962456 creator A5037691180 @default.
- W2191962456 creator A5066967599 @default.
- W2191962456 creator A5074876149 @default.
- W2191962456 creator A5079362043 @default.
- W2191962456 creator A5083892296 @default.
- W2191962456 date "2016-01-01" @default.
- W2191962456 modified "2023-09-23" @default.
- W2191962456 title "Analysis SimCO Algorithms for Sparse Analysis Model Based Dictionary Learning" @default.
- W2191962456 cites W1976717824 @default.
- W2191962456 cites W1986931325 @default.
- W2191962456 cites W1994281301 @default.
- W2191962456 cites W2025948329 @default.
- W2191962456 cites W2045328647 @default.
- W2191962456 cites W2046658845 @default.
- W2191962456 cites W2071631554 @default.
- W2191962456 cites W2097074225 @default.
- W2191962456 cites W2107844156 @default.
- W2191962456 cites W2113945798 @default.
- W2191962456 cites W2115429828 @default.
- W2191962456 cites W2116148865 @default.
- W2191962456 cites W2120047933 @default.
- W2191962456 cites W2122315118 @default.
- W2191962456 cites W2125874614 @default.
- W2191962456 cites W2127271355 @default.
- W2191962456 cites W2128659236 @default.
- W2191962456 cites W2141039087 @default.
- W2191962456 cites W2151693816 @default.
- W2191962456 cites W2160547390 @default.
- W2191962456 cites W2160979406 @default.
- W2191962456 cites W2166790554 @default.
- W2191962456 cites W2171004446 @default.
- W2191962456 cites W2295936755 @default.
- W2191962456 cites W3099751318 @default.
- W2191962456 cites W3100455090 @default.
- W2191962456 cites W3104868231 @default.
- W2191962456 cites W4292363360 @default.
- W2191962456 doi "https://doi.org/10.1109/tsp.2015.2483480" @default.
- W2191962456 hasPublicationYear "2016" @default.
- W2191962456 type Work @default.
- W2191962456 sameAs 2191962456 @default.
- W2191962456 citedByCount "36" @default.
- W2191962456 countsByYear W21919624562016 @default.
- W2191962456 countsByYear W21919624562017 @default.
- W2191962456 countsByYear W21919624562018 @default.
- W2191962456 countsByYear W21919624562019 @default.
- W2191962456 countsByYear W21919624562020 @default.
- W2191962456 countsByYear W21919624562021 @default.
- W2191962456 countsByYear W21919624562022 @default.
- W2191962456 countsByYear W21919624562023 @default.
- W2191962456 crossrefType "journal-article" @default.
- W2191962456 hasAuthorship W2191962456A5027701388 @default.
- W2191962456 hasAuthorship W2191962456A5037691180 @default.
- W2191962456 hasAuthorship W2191962456A5066967599 @default.
- W2191962456 hasAuthorship W2191962456A5074876149 @default.
- W2191962456 hasAuthorship W2191962456A5079362043 @default.
- W2191962456 hasAuthorship W2191962456A5083892296 @default.
- W2191962456 hasBestOaLocation W21919624562 @default.
- W2191962456 hasConcept C105795698 @default.
- W2191962456 hasConcept C11413529 @default.
- W2191962456 hasConcept C121332964 @default.
- W2191962456 hasConcept C124066611 @default.
- W2191962456 hasConcept C153180895 @default.
- W2191962456 hasConcept C154771677 @default.
- W2191962456 hasConcept C154945302 @default.
- W2191962456 hasConcept C163716315 @default.
- W2191962456 hasConcept C2781181686 @default.
- W2191962456 hasConcept C2988886741 @default.
- W2191962456 hasConcept C33923547 @default.
- W2191962456 hasConcept C41008148 @default.
- W2191962456 hasConcept C56372850 @default.
- W2191962456 hasConcept C62520636 @default.
- W2191962456 hasConceptScore W2191962456C105795698 @default.
- W2191962456 hasConceptScore W2191962456C11413529 @default.
- W2191962456 hasConceptScore W2191962456C121332964 @default.
- W2191962456 hasConceptScore W2191962456C124066611 @default.
- W2191962456 hasConceptScore W2191962456C153180895 @default.
- W2191962456 hasConceptScore W2191962456C154771677 @default.
- W2191962456 hasConceptScore W2191962456C154945302 @default.
- W2191962456 hasConceptScore W2191962456C163716315 @default.
- W2191962456 hasConceptScore W2191962456C2781181686 @default.
- W2191962456 hasConceptScore W2191962456C2988886741 @default.
- W2191962456 hasConceptScore W2191962456C33923547 @default.
- W2191962456 hasConceptScore W2191962456C41008148 @default.
- W2191962456 hasConceptScore W2191962456C56372850 @default.
- W2191962456 hasConceptScore W2191962456C62520636 @default.
- W2191962456 hasFunder F4320334627 @default.
- W2191962456 hasIssue "2" @default.
- W2191962456 hasLocation W21919624561 @default.
- W2191962456 hasLocation W21919624562 @default.
- W2191962456 hasLocation W21919624563 @default.
- W2191962456 hasLocation W21919624564 @default.
- W2191962456 hasLocation W21919624565 @default.
- W2191962456 hasLocation W21919624566 @default.
- W2191962456 hasLocation W21919624567 @default.
- W2191962456 hasOpenAccess W2191962456 @default.