Matches in SemOpenAlex for { <https://semopenalex.org/work/W2192832501> ?p ?o ?g. }
- W2192832501 abstract "This thesis is primarily concerned with developing new parameter based blind deconvolution algorithms and studying their applications. The blind deconvolution problem for minimum phase (MP) systems is well understood, and in this case the well known predictive schemes can be employed. When systems are nonminimum phase (NMP), however, the predictive deconvolution methods can only generate the spectrally equivalent MP solution. This is because the predictive schemes are based only on autocorrelations, which are completely blind to the phase properties of systems. In order to solve the blind deconvolution problem of NMP systems, higher order cumulant (HOC) analysis is adopted in this thesis. The reason for this is that HOC carry the phase information of systems only to a linear phase shift. the parametric approach is adopted due to its advantages in terms of variance and resolution over nonparametric methods. Both MA and AR based models are studied in this work. A new robust blind deconvolution algorithm for MP systems: variance approximation and series decoupling (VASD), is presented first. It is shown that this algorithm possesses some advantages over the existing ones with the same purpose. Then, based on a MA system model, we proposed a HOC-based two-step relay algorithm, in which the close-form formula for MA parameters are combined with an optimal fitting scheme, and the thorny problem of multimodality is overcome to a very great degree. Thus, the optimal identification of the MA parameters of NMP systems can be obtained. In the study of the AR based model, six new families of HOC based linear equations with respect to the AR parameters are derived. Since the inverse filter coefficients are simply the solution of a set of linear equations, their uniqueness can normally be guaranteed. In comparison with the existing AR based methods, only diagonal slices of cumulants are used in our algorithms, in which simplicity and elegance are fully embodied. It has been shown that our algorithm can offer more accurate results than the existing ones. Finally, the algorithms obtained above are made adaptive through the novel use of the successive over-relaxation (SOR) scheme, and a fast convergence rate is realised. As a result, the derived adaptive algorithms are capable of dealing with both linear time invariant (Lii) and linear time variant (LTV) systems. Equalisation of multilevel pulse amplitude modulation (PAM) series, which have been transmitted through NMP channels, is simulated, and the results are presented. The research recorded in this thesis is of interest to both the data communications (NMP channel equalisation) and seismic data processing (NMP wavelet removal) community. LIST OF ABBREVIATIONS AGC automatic gain control AR autoregressive AST asymmetric-to-symmetric transformation ARMA autoregressive moving average BGR Benveniste-Goursat-Ruget DD decision directed DFT discrete Fourier transform EMG electromyogram EW elementary waveform FDM frequency domain multiplexing GM Giannakis-Mendel Giannakis method HOC higher order cumulant HOS higher order spectrum IDFT inverse discrete Fourier transform lID independent and identically distributed 1S1 inter-symbol interference LMS least mean squares LS least squares LTI linear time-invariant LTV linear time-variant MA moving average MC Monte-Carlo MED minimum entropy deconvolution ML maximum likelihood MLD maximum likelihood deconvolution MP minimum phase NMP non-minimum phase NMU neuro-muscular-unit OPT optimal PAM pulse amplitude modulation RLS recursive least squares sEMG surface electromyogram SAT symmetric-to-asymmetric transformation SLP searching linear programming SNR signal-to-noise ratio SOR successive over-relaxation TDM time domain multiplexing TDR time domain reflector VASD variance approximation and series decoupling LIST OF PRINCIPAL SYMBOLS a parameter of AR part in an ARMA model asymmetrically distributed data bi parameter of MA part in a ARMA model c (k) restored series CIO diagonal slice of I th-order cumulants e 2.7182818 e (t) elementary waveform h (k), hk system unit-sample response i parameter number j parameter number V k sample number I parameter number max () maximum of a set of real numbers mm () minimum of a set of real numbers n parameter number n (k) sampled additive (or measurement) noise n (t) additive (or measurement) noise P AR order of ARMA model Pi predictor coefficient q MA order of ARMA model order of non-causal part of inverse filter r2 order of causal part of inverse filter Si symmetrically distributed data S (r) surface electromyogram SC 2 estimated variance t time u• coefficient of elementary waveform w (k) realisation of an RD process x (k) system input series system output series x1 (k) noise-free system output y (k) system output series y, (k) noise-free system output series 9 (k + 1 k) one-step prediction of y (k) at time k Z variable in the z-transform Zi zero of system transfer function A (o) amplitude frequency response of a system C, (T) I th-order cumulant D [] characteristic system" @default.
- W2192832501 created "2016-06-24" @default.
- W2192832501 creator A5016793245 @default.
- W2192832501 date "1992-01-01" @default.
- W2192832501 modified "2023-09-27" @default.
- W2192832501 title "BLIND DECONVOLUTION: TECHNIQUES AND APPLICATIONS" @default.
- W2192832501 cites W107193498 @default.
- W2192832501 cites W1155030466 @default.
- W2192832501 cites W1482957539 @default.
- W2192832501 cites W1533444201 @default.
- W2192832501 cites W1552901685 @default.
- W2192832501 cites W1587896874 @default.
- W2192832501 cites W1589953641 @default.
- W2192832501 cites W1592196549 @default.
- W2192832501 cites W1603313343 @default.
- W2192832501 cites W1607034620 @default.
- W2192832501 cites W1607795755 @default.
- W2192832501 cites W1667165204 @default.
- W2192832501 cites W1753754790 @default.
- W2192832501 cites W1779578259 @default.
- W2192832501 cites W1791071124 @default.
- W2192832501 cites W1914708705 @default.
- W2192832501 cites W1966264494 @default.
- W2192832501 cites W1966786488 @default.
- W2192832501 cites W1971032479 @default.
- W2192832501 cites W1971132342 @default.
- W2192832501 cites W1972022365 @default.
- W2192832501 cites W1972095580 @default.
- W2192832501 cites W1975591141 @default.
- W2192832501 cites W1977819663 @default.
- W2192832501 cites W1980094292 @default.
- W2192832501 cites W1992252851 @default.
- W2192832501 cites W1996180003 @default.
- W2192832501 cites W1999322057 @default.
- W2192832501 cites W2001905757 @default.
- W2192832501 cites W2004406940 @default.
- W2192832501 cites W2009697036 @default.
- W2192832501 cites W2015873543 @default.
- W2192832501 cites W2016032666 @default.
- W2192832501 cites W2016783575 @default.
- W2192832501 cites W2017351116 @default.
- W2192832501 cites W2018388266 @default.
- W2192832501 cites W2019024593 @default.
- W2192832501 cites W2024060531 @default.
- W2192832501 cites W2024302331 @default.
- W2192832501 cites W2032857037 @default.
- W2192832501 cites W2039640067 @default.
- W2192832501 cites W2041222266 @default.
- W2192832501 cites W2047249859 @default.
- W2192832501 cites W2048485296 @default.
- W2192832501 cites W2070303792 @default.
- W2192832501 cites W2071842065 @default.
- W2192832501 cites W2079332753 @default.
- W2192832501 cites W2093139466 @default.
- W2192832501 cites W2097987904 @default.
- W2192832501 cites W2106382018 @default.
- W2192832501 cites W2107263769 @default.
- W2192832501 cites W2112072801 @default.
- W2192832501 cites W2114260200 @default.
- W2192832501 cites W2114713985 @default.
- W2192832501 cites W2120481373 @default.
- W2192832501 cites W2120622496 @default.
- W2192832501 cites W2121078120 @default.
- W2192832501 cites W2123879611 @default.
- W2192832501 cites W2124024908 @default.
- W2192832501 cites W2124361151 @default.
- W2192832501 cites W2127863764 @default.
- W2192832501 cites W2131953159 @default.
- W2192832501 cites W2132440327 @default.
- W2192832501 cites W2138557623 @default.
- W2192832501 cites W2140719220 @default.
- W2192832501 cites W2143570353 @default.
- W2192832501 cites W2149235378 @default.
- W2192832501 cites W2152198648 @default.
- W2192832501 cites W2152552797 @default.
- W2192832501 cites W2154999013 @default.
- W2192832501 cites W2157522867 @default.
- W2192832501 cites W2159172078 @default.
- W2192832501 cites W2162681512 @default.
- W2192832501 cites W2163636005 @default.
- W2192832501 cites W2165835141 @default.
- W2192832501 cites W2166517849 @default.
- W2192832501 cites W2167016813 @default.
- W2192832501 cites W2170459977 @default.
- W2192832501 cites W2171511682 @default.
- W2192832501 cites W2180370766 @default.
- W2192832501 cites W2264128983 @default.
- W2192832501 cites W2281640434 @default.
- W2192832501 cites W2294522120 @default.
- W2192832501 cites W2296108426 @default.
- W2192832501 cites W2588081979 @default.
- W2192832501 cites W2796837256 @default.
- W2192832501 cites W3004157836 @default.
- W2192832501 cites W3019584399 @default.
- W2192832501 cites W3035235874 @default.
- W2192832501 cites W628029314 @default.
- W2192832501 cites W643728515 @default.
- W2192832501 cites W651137275 @default.
- W2192832501 cites W66733182 @default.
- W2192832501 cites W748198886 @default.