Matches in SemOpenAlex for { <https://semopenalex.org/work/W2193607527> ?p ?o ?g. }
- W2193607527 endingPage "16" @default.
- W2193607527 startingPage "1" @default.
- W2193607527 abstract "Regression testing is the process of retesting a system after it or its environment has changed. Many techniques aim to find the cheapest subset of the regression test suite that achieves full coverage. More recently, it has been observed that the tester might want to have a range of solutions providing different trade-offs between cost and one or more forms of coverage, this being a multi-objective optimisation problem. This paper further develops the multi-objective agenda by adapting a decomposition-based multi-objective evolutionary algorithm (MOEA/D). Experiments evaluated four approaches: a classic greedy algorithm; non-dominated sorting genetic algorithm II (NSGA-II); MOEA/D with a fixed value for a parameter c; and MOEA/D in which tuning was used to choose the value of c. These used six programs from the SIR repository and one larger program, VoidAuth. In all of the experiments MOEA/D with tuning was the most effective technique. The relative performance of the other techniques varied, although MOEA/D with fixed c outperformed NSGA-II on the larger programs (Space and VoidAuth)." @default.
- W2193607527 created "2016-06-24" @default.
- W2193607527 creator A5009644797 @default.
- W2193607527 creator A5016946533 @default.
- W2193607527 creator A5035358476 @default.
- W2193607527 creator A5036335232 @default.
- W2193607527 creator A5048072558 @default.
- W2193607527 date "2016-03-01" @default.
- W2193607527 modified "2023-10-18" @default.
- W2193607527 title "Multi-objective optimisation for regression testing" @default.
- W2193607527 cites W1965811262 @default.
- W2193607527 cites W1971583942 @default.
- W2193607527 cites W1980815151 @default.
- W2193607527 cites W1998393968 @default.
- W2193607527 cites W2011890778 @default.
- W2193607527 cites W2014515160 @default.
- W2193607527 cites W2015371402 @default.
- W2193607527 cites W2018300124 @default.
- W2193607527 cites W2020320008 @default.
- W2193607527 cites W2029066866 @default.
- W2193607527 cites W2040019420 @default.
- W2193607527 cites W2041470132 @default.
- W2193607527 cites W2063375245 @default.
- W2193607527 cites W2071694551 @default.
- W2193607527 cites W2105245738 @default.
- W2193607527 cites W2106334424 @default.
- W2193607527 cites W2110068396 @default.
- W2193607527 cites W2120563984 @default.
- W2193607527 cites W2123356060 @default.
- W2193607527 cites W2126105956 @default.
- W2193607527 cites W2127459836 @default.
- W2193607527 cites W2128357515 @default.
- W2193607527 cites W2133787071 @default.
- W2193607527 cites W2143381319 @default.
- W2193607527 cites W2145149095 @default.
- W2193607527 cites W2150046657 @default.
- W2193607527 cites W2165026393 @default.
- W2193607527 cites W760913798 @default.
- W2193607527 doi "https://doi.org/10.1016/j.ins.2015.11.027" @default.
- W2193607527 hasPublicationYear "2016" @default.
- W2193607527 type Work @default.
- W2193607527 sameAs 2193607527 @default.
- W2193607527 citedByCount "30" @default.
- W2193607527 countsByYear W21936075272016 @default.
- W2193607527 countsByYear W21936075272017 @default.
- W2193607527 countsByYear W21936075272018 @default.
- W2193607527 countsByYear W21936075272019 @default.
- W2193607527 countsByYear W21936075272021 @default.
- W2193607527 countsByYear W21936075272022 @default.
- W2193607527 countsByYear W21936075272023 @default.
- W2193607527 crossrefType "journal-article" @default.
- W2193607527 hasAuthorship W2193607527A5009644797 @default.
- W2193607527 hasAuthorship W2193607527A5016946533 @default.
- W2193607527 hasAuthorship W2193607527A5035358476 @default.
- W2193607527 hasAuthorship W2193607527A5036335232 @default.
- W2193607527 hasAuthorship W2193607527A5048072558 @default.
- W2193607527 hasBestOaLocation W21936075272 @default.
- W2193607527 hasConcept C105795698 @default.
- W2193607527 hasConcept C111696304 @default.
- W2193607527 hasConcept C111919701 @default.
- W2193607527 hasConcept C11413529 @default.
- W2193607527 hasConcept C124681953 @default.
- W2193607527 hasConcept C126255220 @default.
- W2193607527 hasConcept C127413603 @default.
- W2193607527 hasConcept C146978453 @default.
- W2193607527 hasConcept C159149176 @default.
- W2193607527 hasConcept C18903297 @default.
- W2193607527 hasConcept C204323151 @default.
- W2193607527 hasConcept C33923547 @default.
- W2193607527 hasConcept C41008148 @default.
- W2193607527 hasConcept C51823790 @default.
- W2193607527 hasConcept C68781425 @default.
- W2193607527 hasConcept C83546350 @default.
- W2193607527 hasConcept C86803240 @default.
- W2193607527 hasConcept C8880873 @default.
- W2193607527 hasConcept C98045186 @default.
- W2193607527 hasConceptScore W2193607527C105795698 @default.
- W2193607527 hasConceptScore W2193607527C111696304 @default.
- W2193607527 hasConceptScore W2193607527C111919701 @default.
- W2193607527 hasConceptScore W2193607527C11413529 @default.
- W2193607527 hasConceptScore W2193607527C124681953 @default.
- W2193607527 hasConceptScore W2193607527C126255220 @default.
- W2193607527 hasConceptScore W2193607527C127413603 @default.
- W2193607527 hasConceptScore W2193607527C146978453 @default.
- W2193607527 hasConceptScore W2193607527C159149176 @default.
- W2193607527 hasConceptScore W2193607527C18903297 @default.
- W2193607527 hasConceptScore W2193607527C204323151 @default.
- W2193607527 hasConceptScore W2193607527C33923547 @default.
- W2193607527 hasConceptScore W2193607527C41008148 @default.
- W2193607527 hasConceptScore W2193607527C51823790 @default.
- W2193607527 hasConceptScore W2193607527C68781425 @default.
- W2193607527 hasConceptScore W2193607527C83546350 @default.
- W2193607527 hasConceptScore W2193607527C86803240 @default.
- W2193607527 hasConceptScore W2193607527C8880873 @default.
- W2193607527 hasConceptScore W2193607527C98045186 @default.
- W2193607527 hasLocation W21936075271 @default.
- W2193607527 hasLocation W21936075272 @default.
- W2193607527 hasOpenAccess W2193607527 @default.