Matches in SemOpenAlex for { <https://semopenalex.org/work/W2193990147> ?p ?o ?g. }
- W2193990147 endingPage "595" @default.
- W2193990147 startingPage "583" @default.
- W2193990147 abstract "A numerical model was developed to assess the feasibility of microbial CH4 generation in geological CO2 storage sites. The model accounts for water-rock geochemical reactions, microbial competition between methanogenic microbes and sulfate reducing bacteria (SRB) for H2 and acetate, and the effect of pH on the activity of microbes. For the sake of analysis, carbohydrates contained in the stimulating nutrient injected along with CO2 serves as source for the biogenic formation of H2 and acetate by H2-forming fermentative microbes. Simulation results unveiled that the pH buffering effect of carbonate minerals such as calcite is of outmost importance to push methanogenesis reactions. CO2 injection into a geological formation containing calcite enhances the biogenic supply of H2 and acetate by providing near optimum pH conditions for the activity of H2-forming fermentative microbes. However, when sulfate in the formation water is present in excesses, hydrogenotrophic and acetotrophic SRB outcompete hydrogenotrophic and acetotrophic methanogenic microbes for H2 and acetate, respectively. This is reflected by the predominant formation of H2S and negligible formation of CH4. With calcite in the mineral phase, the activity of SRB and methanogenic microbes is governed by their initial concentrations in the formation water. Without calcite in the mineral phase, injection of CO2 inhibits the activity of hydrogenotrophic and acetotrophic SRB and methanogenic microbes, but not the activity of H2-forming fermentative microbes. The activity of H2-forming fermentative microbes is not conditioned to the presence of calcite in the mineral phase as their optimum pH falls within the acidic range that results from the injection of CO2. Without sufficient amounts of sulfate in the formation water to support the activity of SRB, injection of CO2 into a geological formation containing calcite favors the biogenic formation of CH4 via the reduction pathway of CO2 with H2, whereas without CO2 injection methanogenesis via acetate fermentation is favored. Methanogenesis in geological CO2 storage sites is possible under controlled CO2 and stimulating organic nutrients injection. Oil reservoirs containing calcite in the mineral phase and low concentrations of sulfate in the formation water are most suitable for microbial methanogenesis from CO2 in geological CO2 storage sites." @default.
- W2193990147 created "2016-06-24" @default.
- W2193990147 creator A5078332172 @default.
- W2193990147 date "2015-11-01" @default.
- W2193990147 modified "2023-10-01" @default.
- W2193990147 title "Numerical modeling and simulation of microbial methanogenesis in geological CO2 storage sites" @default.
- W2193990147 cites W1531710391 @default.
- W2193990147 cites W1551087707 @default.
- W2193990147 cites W1553551918 @default.
- W2193990147 cites W1732925350 @default.
- W2193990147 cites W1969161196 @default.
- W2193990147 cites W1972816637 @default.
- W2193990147 cites W1982575046 @default.
- W2193990147 cites W1985759333 @default.
- W2193990147 cites W1985762111 @default.
- W2193990147 cites W1987637178 @default.
- W2193990147 cites W1994877325 @default.
- W2193990147 cites W1996072770 @default.
- W2193990147 cites W2004002777 @default.
- W2193990147 cites W2007111511 @default.
- W2193990147 cites W2008865642 @default.
- W2193990147 cites W2010028644 @default.
- W2193990147 cites W2012191296 @default.
- W2193990147 cites W2014030308 @default.
- W2193990147 cites W2014748746 @default.
- W2193990147 cites W2017297739 @default.
- W2193990147 cites W2018653600 @default.
- W2193990147 cites W2022548650 @default.
- W2193990147 cites W2025405310 @default.
- W2193990147 cites W2028193560 @default.
- W2193990147 cites W2032804032 @default.
- W2193990147 cites W2032854853 @default.
- W2193990147 cites W2033574540 @default.
- W2193990147 cites W2037076888 @default.
- W2193990147 cites W2057758013 @default.
- W2193990147 cites W2062405688 @default.
- W2193990147 cites W2067993920 @default.
- W2193990147 cites W2075567615 @default.
- W2193990147 cites W2084283421 @default.
- W2193990147 cites W2104031490 @default.
- W2193990147 cites W2118046104 @default.
- W2193990147 cites W2139456042 @default.
- W2193990147 cites W2139816774 @default.
- W2193990147 cites W2143563342 @default.
- W2193990147 cites W2148579783 @default.
- W2193990147 cites W2155550663 @default.
- W2193990147 cites W2167409541 @default.
- W2193990147 cites W2315892471 @default.
- W2193990147 cites W235447883 @default.
- W2193990147 cites W2404760446 @default.
- W2193990147 doi "https://doi.org/10.1016/j.petrol.2015.10.015" @default.
- W2193990147 hasPublicationYear "2015" @default.
- W2193990147 type Work @default.
- W2193990147 sameAs 2193990147 @default.
- W2193990147 citedByCount "17" @default.
- W2193990147 countsByYear W21939901472017 @default.
- W2193990147 countsByYear W21939901472018 @default.
- W2193990147 countsByYear W21939901472019 @default.
- W2193990147 countsByYear W21939901472020 @default.
- W2193990147 countsByYear W21939901472021 @default.
- W2193990147 countsByYear W21939901472022 @default.
- W2193990147 countsByYear W21939901472023 @default.
- W2193990147 crossrefType "journal-article" @default.
- W2193990147 hasAuthorship W2193990147A5078332172 @default.
- W2193990147 hasBestOaLocation W21939901471 @default.
- W2193990147 hasConcept C107872376 @default.
- W2193990147 hasConcept C178790620 @default.
- W2193990147 hasConcept C185592680 @default.
- W2193990147 hasConcept C199289684 @default.
- W2193990147 hasConcept C2776432453 @default.
- W2193990147 hasConcept C2778343803 @default.
- W2193990147 hasConcept C2778589620 @default.
- W2193990147 hasConcept C2780191791 @default.
- W2193990147 hasConcept C2780659211 @default.
- W2193990147 hasConcept C516920438 @default.
- W2193990147 hasConceptScore W2193990147C107872376 @default.
- W2193990147 hasConceptScore W2193990147C178790620 @default.
- W2193990147 hasConceptScore W2193990147C185592680 @default.
- W2193990147 hasConceptScore W2193990147C199289684 @default.
- W2193990147 hasConceptScore W2193990147C2776432453 @default.
- W2193990147 hasConceptScore W2193990147C2778343803 @default.
- W2193990147 hasConceptScore W2193990147C2778589620 @default.
- W2193990147 hasConceptScore W2193990147C2780191791 @default.
- W2193990147 hasConceptScore W2193990147C2780659211 @default.
- W2193990147 hasConceptScore W2193990147C516920438 @default.
- W2193990147 hasLocation W21939901471 @default.
- W2193990147 hasOpenAccess W2193990147 @default.
- W2193990147 hasPrimaryLocation W21939901471 @default.
- W2193990147 hasRelatedWork W1487526217 @default.
- W2193990147 hasRelatedWork W1652502552 @default.
- W2193990147 hasRelatedWork W1969327214 @default.
- W2193990147 hasRelatedWork W1988563740 @default.
- W2193990147 hasRelatedWork W1993348599 @default.
- W2193990147 hasRelatedWork W2055921778 @default.
- W2193990147 hasRelatedWork W2092803422 @default.
- W2193990147 hasRelatedWork W2134953175 @default.
- W2193990147 hasRelatedWork W2171131389 @default.
- W2193990147 hasRelatedWork W4386946083 @default.