Matches in SemOpenAlex for { <https://semopenalex.org/work/W2194535160> ?p ?o ?g. }
- W2194535160 endingPage "273" @default.
- W2194535160 startingPage "265" @default.
- W2194535160 abstract "Classification models are becoming useful tools for finding patterns in neuroimaging data sets that are not observable to the naked eye. Many of these models are applied to discriminating clinical groups such as schizophrenic patients from healthy controls or from patients with bipolar disorder. A more nuanced model might be to discriminate between levels of personality traits. Here, as a proof of concept, we take an initial step toward developing prediction models to differentiate individuals based on a personality disorder: psychopathy. We included three groups of adolescent participants: incarcerated youth with elevated psychopathic traits (i.e., callous and unemotional traits and conduct disordered traits; n = 71), incarcerated youth with low psychopathic traits (n = 72), and non-incarcerated youth as healthy controls (n = 21). Support vector machine (SVM) learning models were developed to separate these groups using an out-of-sample cross-validation method on voxel-based morphometry (VBM) data. Regions of interest from the paralimbic system, identified in an independent forensic sample, were successful in differentiating youth groups. Models seeking to classify incarcerated individuals to have high or low psychopathic traits achieved 69.23% overall accuracy. As expected, accuracy increased in models differentiating healthy controls from individuals with high psychopathic traits (82.61%) and low psychopathic traits (80.65%). Here we have laid the foundation for using neural correlates of personality traits to identify group membership within and beyond psychopathy. This is only the first step, of many, toward prediction models using neural measures as a proxy for personality traits. As these methods are improved, prediction models with neural measures of personality traits could have far-reaching impact on diagnosis, treatment, and prediction of future behavior." @default.
- W2194535160 created "2016-06-24" @default.
- W2194535160 creator A5015647568 @default.
- W2194535160 creator A5032850756 @default.
- W2194535160 creator A5053150455 @default.
- W2194535160 creator A5055430098 @default.
- W2194535160 date "2017-01-01" @default.
- W2194535160 modified "2023-10-15" @default.
- W2194535160 title "Machine learning of structural magnetic resonance imaging predicts psychopathic traits in adolescent offenders" @default.
- W2194535160 cites W1678268661 @default.
- W2194535160 cites W1964452939 @default.
- W2194535160 cites W1968093452 @default.
- W2194535160 cites W1971950154 @default.
- W2194535160 cites W1977220343 @default.
- W2194535160 cites W1984030600 @default.
- W2194535160 cites W1985327120 @default.
- W2194535160 cites W1994822360 @default.
- W2194535160 cites W1999986050 @default.
- W2194535160 cites W2001227183 @default.
- W2194535160 cites W2009449617 @default.
- W2194535160 cites W2011595299 @default.
- W2194535160 cites W2014668809 @default.
- W2194535160 cites W2016461050 @default.
- W2194535160 cites W2020397199 @default.
- W2194535160 cites W2030700120 @default.
- W2194535160 cites W2039397313 @default.
- W2194535160 cites W2040709265 @default.
- W2194535160 cites W2042824731 @default.
- W2194535160 cites W2044377864 @default.
- W2194535160 cites W2045257745 @default.
- W2194535160 cites W2058846847 @default.
- W2194535160 cites W2059165232 @default.
- W2194535160 cites W2063404606 @default.
- W2194535160 cites W2072751163 @default.
- W2194535160 cites W2075637233 @default.
- W2194535160 cites W2080036690 @default.
- W2194535160 cites W2084392945 @default.
- W2194535160 cites W2087582367 @default.
- W2194535160 cites W2088431104 @default.
- W2194535160 cites W2088658039 @default.
- W2194535160 cites W2096198637 @default.
- W2194535160 cites W2097198018 @default.
- W2194535160 cites W2102492703 @default.
- W2194535160 cites W2118164359 @default.
- W2194535160 cites W2119720840 @default.
- W2194535160 cites W2119848633 @default.
- W2194535160 cites W2122484231 @default.
- W2194535160 cites W2126350472 @default.
- W2194535160 cites W2131458138 @default.
- W2194535160 cites W2133502275 @default.
- W2194535160 cites W2134873723 @default.
- W2194535160 cites W2136251662 @default.
- W2194535160 cites W2140426420 @default.
- W2194535160 cites W2141724543 @default.
- W2194535160 cites W2145064079 @default.
- W2194535160 cites W2145958145 @default.
- W2194535160 cites W2150471518 @default.
- W2194535160 cites W2151721316 @default.
- W2194535160 cites W2160598114 @default.
- W2194535160 cites W2162542540 @default.
- W2194535160 cites W2166380662 @default.
- W2194535160 cites W2171070255 @default.
- W2194535160 cites W2171266569 @default.
- W2194535160 cites W2186601539 @default.
- W2194535160 cites W4230920194 @default.
- W2194535160 cites W4251443006 @default.
- W2194535160 doi "https://doi.org/10.1016/j.neuroimage.2015.12.013" @default.
- W2194535160 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4903946" @default.
- W2194535160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26690808" @default.
- W2194535160 hasPublicationYear "2017" @default.
- W2194535160 type Work @default.
- W2194535160 sameAs 2194535160 @default.
- W2194535160 citedByCount "29" @default.
- W2194535160 countsByYear W21945351602017 @default.
- W2194535160 countsByYear W21945351602018 @default.
- W2194535160 countsByYear W21945351602019 @default.
- W2194535160 countsByYear W21945351602020 @default.
- W2194535160 countsByYear W21945351602021 @default.
- W2194535160 countsByYear W21945351602022 @default.
- W2194535160 countsByYear W21945351602023 @default.
- W2194535160 crossrefType "journal-article" @default.
- W2194535160 hasAuthorship W2194535160A5015647568 @default.
- W2194535160 hasAuthorship W2194535160A5032850756 @default.
- W2194535160 hasAuthorship W2194535160A5053150455 @default.
- W2194535160 hasAuthorship W2194535160A5055430098 @default.
- W2194535160 hasBestOaLocation W21945351602 @default.
- W2194535160 hasConcept C118552586 @default.
- W2194535160 hasConcept C138496976 @default.
- W2194535160 hasConcept C15744967 @default.
- W2194535160 hasConcept C187288502 @default.
- W2194535160 hasConcept C190385971 @default.
- W2194535160 hasConcept C2776276179 @default.
- W2194535160 hasConcept C2865642 @default.
- W2194535160 hasConcept C3017944768 @default.
- W2194535160 hasConcept C521466935 @default.
- W2194535160 hasConcept C58693492 @default.
- W2194535160 hasConcept C70410870 @default.
- W2194535160 hasConcept C71924100 @default.