Matches in SemOpenAlex for { <https://semopenalex.org/work/W2195087649> ?p ?o ?g. }
- W2195087649 endingPage "197" @default.
- W2195087649 startingPage "181" @default.
- W2195087649 abstract "Disequilibrium melting arises when the kinetics of chemical exchange between a residual mineral and partial melt is sluggish compare to the rate of melting. To better understand the role of a finite crystal–melt exchange rate on trace element fractionation during mantle melting, we have developed a disequilibrium melting model for partial melting in an upwelling steady-state column. We use linear kinetics to approximate crystal–melt mass exchange rate and obtain simple analytical solutions for cases of perfect fractional melting and batch melting. A key parameter determining the extent of chemical disequilibrium during partial melting is an element specific dimensionless ratio (ε) defined as the melting rate relative to the solid–melt chemical exchange rate for the trace element of interest. In the case of diffusion in mineral limited chemical exchange, ε is inversely proportional to diffusivity of the element of interest. Disequilibrium melting is important for the trace element when ε is comparable to or greater than the bulk solid–melt partition coefficient for the trace element (k). The disequilibrium fractional melting model is reduced to the equilibrium perfect fractional melting model when ε is much smaller than k. Hence highly incompatible trace elements with smaller mobilities in minerals are more susceptible to disequilibrium melting than moderately incompatible and compatible trace elements. Effect of chemical disequilibrium is to hinder the extent of fractionation between residual solid and partial melt, making the residual solid less depleted and the accumulated melt more depleted in incompatible trace element abundances relative the case of equilibrium melting. Application of the disequilibrium fractional melting model to REE and Y abundances in clinopyroxene in abyssal peridotites from the Central Indian Ridge and the Vema Lithospheric Section, Mid-Atlantic Ridge revealed a positive correlation between the disequilibrium parameter ε and the degree of melting, which can be explained by an increase in melting rate and a decrease in REE diffusion rate in the upper part of the melting column. Small extent of disequilibrium melting for LREE and equilibrium melting for HREE in the upper part of the melting column can explain the elevated LREE abundances or spoon-shaped REE patterns in clinopyroxene in more refractory abyssal peridotites. The latter has often been attributed to melt refertilization." @default.
- W2195087649 created "2016-06-24" @default.
- W2195087649 creator A5003521519 @default.
- W2195087649 creator A5068745618 @default.
- W2195087649 date "2016-01-01" @default.
- W2195087649 modified "2023-10-17" @default.
- W2195087649 title "Simple models for disequilibrium fractional melting and batch melting with application to REE fractionation in abyssal peridotites" @default.
- W2195087649 cites W1535363067 @default.
- W2195087649 cites W1649212808 @default.
- W2195087649 cites W1672607131 @default.
- W2195087649 cites W1966133457 @default.
- W2195087649 cites W1966212415 @default.
- W2195087649 cites W1966942623 @default.
- W2195087649 cites W1969303984 @default.
- W2195087649 cites W1970768689 @default.
- W2195087649 cites W1973549121 @default.
- W2195087649 cites W1977457396 @default.
- W2195087649 cites W1984048707 @default.
- W2195087649 cites W1985812434 @default.
- W2195087649 cites W1989488688 @default.
- W2195087649 cites W1991233824 @default.
- W2195087649 cites W1995698047 @default.
- W2195087649 cites W2001173398 @default.
- W2195087649 cites W2005739263 @default.
- W2195087649 cites W2007433465 @default.
- W2195087649 cites W2008484817 @default.
- W2195087649 cites W2011607179 @default.
- W2195087649 cites W2016701904 @default.
- W2195087649 cites W2019426353 @default.
- W2195087649 cites W2020849719 @default.
- W2195087649 cites W2021620030 @default.
- W2195087649 cites W2023335789 @default.
- W2195087649 cites W2024989222 @default.
- W2195087649 cites W2028202848 @default.
- W2195087649 cites W2028377358 @default.
- W2195087649 cites W2039535921 @default.
- W2195087649 cites W2041529465 @default.
- W2195087649 cites W2042149675 @default.
- W2195087649 cites W2043871449 @default.
- W2195087649 cites W2046882472 @default.
- W2195087649 cites W2052657974 @default.
- W2195087649 cites W2052997567 @default.
- W2195087649 cites W2054282168 @default.
- W2195087649 cites W2054757994 @default.
- W2195087649 cites W2059901489 @default.
- W2195087649 cites W2062218969 @default.
- W2195087649 cites W2063071451 @default.
- W2195087649 cites W2064229579 @default.
- W2195087649 cites W2066236108 @default.
- W2195087649 cites W2077222169 @default.
- W2195087649 cites W2078896342 @default.
- W2195087649 cites W2079868830 @default.
- W2195087649 cites W2080973789 @default.
- W2195087649 cites W2086285917 @default.
- W2195087649 cites W2088490813 @default.
- W2195087649 cites W2093570940 @default.
- W2195087649 cites W2097632022 @default.
- W2195087649 cites W2099914884 @default.
- W2195087649 cites W2106511669 @default.
- W2195087649 cites W2107613699 @default.
- W2195087649 cites W2113369720 @default.
- W2195087649 cites W2123069197 @default.
- W2195087649 cites W2125923958 @default.
- W2195087649 cites W2133264142 @default.
- W2195087649 cites W2133702463 @default.
- W2195087649 cites W2134226415 @default.
- W2195087649 cites W2136892820 @default.
- W2195087649 cites W2139696801 @default.
- W2195087649 cites W2140036873 @default.
- W2195087649 cites W2145237455 @default.
- W2195087649 cites W2152476037 @default.
- W2195087649 cites W2156279494 @default.
- W2195087649 cites W2164221510 @default.
- W2195087649 cites W2165975276 @default.
- W2195087649 cites W2316110691 @default.
- W2195087649 doi "https://doi.org/10.1016/j.gca.2015.10.020" @default.
- W2195087649 hasPublicationYear "2016" @default.
- W2195087649 type Work @default.
- W2195087649 sameAs 2195087649 @default.
- W2195087649 citedByCount "21" @default.
- W2195087649 countsByYear W21950876492016 @default.
- W2195087649 countsByYear W21950876492017 @default.
- W2195087649 countsByYear W21950876492018 @default.
- W2195087649 countsByYear W21950876492019 @default.
- W2195087649 countsByYear W21950876492020 @default.
- W2195087649 countsByYear W21950876492021 @default.
- W2195087649 countsByYear W21950876492022 @default.
- W2195087649 countsByYear W21950876492023 @default.
- W2195087649 crossrefType "journal-article" @default.
- W2195087649 hasAuthorship W2195087649A5003521519 @default.
- W2195087649 hasAuthorship W2195087649A5068745618 @default.
- W2195087649 hasBestOaLocation W21950876491 @default.
- W2195087649 hasConcept C118487528 @default.
- W2195087649 hasConcept C121332964 @default.
- W2195087649 hasConcept C127313418 @default.
- W2195087649 hasConcept C17409809 @default.
- W2195087649 hasConcept C185592680 @default.
- W2195087649 hasConcept C192552737 @default.