Matches in SemOpenAlex for { <https://semopenalex.org/work/W2195855237> ?p ?o ?g. }
- W2195855237 abstract "Classification is one of the primary tasks of data mining and aims to assign a class label to unseen examples by using a model learned from a training dataset. Most of the accepted classifiers are designed to minimize the error rate but in practice data mining involves costs such as the cost of getting the data, and cost of making an error. Hence the following question arises:Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?It is well known to the machine learning community that there is no single algorithm that performs best for all domains. This observation motivates the need to develop an “algorithm selector” which is the work of automating the process of choosing between different algorithms given a specific domain of application. Thus, this research develops a new meta-learning system for recommending cost-sensitive classification methods. The system is based on the idea of applying machine learning to discover knowledge about the performance of different data mining algorithms. It includes components that repeatedly apply different classification methods on data sets and measuring their performance. The characteristics of the data sets, combined with the algorithm and the performance provide the training examples. A decision tree algorithm is applied on the training examples to induce the knowledge which can then be applied to recommend algorithms for new data sets, and then active learning is used to automate the ability to choose the most informative data set that should enter the learning process.This thesis makes contributions to both the fields of meta-learning, and cost sensitive learning in that it develops a new meta-learning approach for recommending cost-sensitive methods. Although, meta-learning is not new, the task of accelerating the learning process remains an open problem, and the thesis develops a novel active learning strategy based on clustering that gives the learner the ability to choose which data to learn from and accordingly, speed up the meta-learning process.Both the meta-learning system and use of active learning are implemented in the WEKA system and evaluated by applying them on different datasets and comparing the results with existing studies available in the literature. The results show that the meta-learning system developed produces better results than METAL, a well-known meta-learning system and that the use of clustering and active learning has a positive effect on accelerating the meta-learning process, where all tested datasets show a decrement of error rate prediction by 75 %." @default.
- W2195855237 created "2016-06-24" @default.
- W2195855237 creator A5055638307 @default.
- W2195855237 date "2015-09-04" @default.
- W2195855237 modified "2023-09-26" @default.
- W2195855237 title "Cost sensitive meta-learning" @default.
- W2195855237 cites W116375701 @default.
- W2195855237 cites W123226248 @default.
- W2195855237 cites W129956905 @default.
- W2195855237 cites W138217685 @default.
- W2195855237 cites W1492127447 @default.
- W2195855237 cites W1495061682 @default.
- W2195855237 cites W1495775210 @default.
- W2195855237 cites W1504618398 @default.
- W2195855237 cites W1516621661 @default.
- W2195855237 cites W1527418157 @default.
- W2195855237 cites W1539739406 @default.
- W2195855237 cites W1540659332 @default.
- W2195855237 cites W1571061365 @default.
- W2195855237 cites W1576460547 @default.
- W2195855237 cites W1583700199 @default.
- W2195855237 cites W1589187426 @default.
- W2195855237 cites W1599935123 @default.
- W2195855237 cites W1619226191 @default.
- W2195855237 cites W162897784 @default.
- W2195855237 cites W164287990 @default.
- W2195855237 cites W1661871015 @default.
- W2195855237 cites W167016754 @default.
- W2195855237 cites W169052826 @default.
- W2195855237 cites W1808644423 @default.
- W2195855237 cites W1819386543 @default.
- W2195855237 cites W1826478421 @default.
- W2195855237 cites W1849729440 @default.
- W2195855237 cites W1870343589 @default.
- W2195855237 cites W1909870529 @default.
- W2195855237 cites W1924689489 @default.
- W2195855237 cites W1929471015 @default.
- W2195855237 cites W1941659294 @default.
- W2195855237 cites W1965895350 @default.
- W2195855237 cites W1968200975 @default.
- W2195855237 cites W1978633512 @default.
- W2195855237 cites W1979412670 @default.
- W2195855237 cites W1985995090 @default.
- W2195855237 cites W1995617856 @default.
- W2195855237 cites W2005530589 @default.
- W2195855237 cites W2013640190 @default.
- W2195855237 cites W2015452969 @default.
- W2195855237 cites W2015478155 @default.
- W2195855237 cites W2017337590 @default.
- W2195855237 cites W2018770010 @default.
- W2195855237 cites W2032210760 @default.
- W2195855237 cites W2032427901 @default.
- W2195855237 cites W2038181716 @default.
- W2195855237 cites W2040884411 @default.
- W2195855237 cites W2041304617 @default.
- W2195855237 cites W2058732827 @default.
- W2195855237 cites W2063270381 @default.
- W2195855237 cites W2070855716 @default.
- W2195855237 cites W2078684405 @default.
- W2195855237 cites W2080021732 @default.
- W2195855237 cites W2085989833 @default.
- W2195855237 cites W2091118421 @default.
- W2195855237 cites W2098203240 @default.
- W2195855237 cites W2098742124 @default.
- W2195855237 cites W2103333826 @default.
- W2195855237 cites W2103614420 @default.
- W2195855237 cites W2104597806 @default.
- W2195855237 cites W2109676405 @default.
- W2195855237 cites W2112204321 @default.
- W2195855237 cites W2118789407 @default.
- W2195855237 cites W2127816222 @default.
- W2195855237 cites W2130600071 @default.
- W2195855237 cites W2130949063 @default.
- W2195855237 cites W2133462743 @default.
- W2195855237 cites W2133928392 @default.
- W2195855237 cites W2133990480 @default.
- W2195855237 cites W2135660446 @default.
- W2195855237 cites W2138183512 @default.
- W2195855237 cites W2139709458 @default.
- W2195855237 cites W2142261479 @default.
- W2195855237 cites W2145680191 @default.
- W2195855237 cites W2148143831 @default.
- W2195855237 cites W2149308034 @default.
- W2195855237 cites W2149706766 @default.
- W2195855237 cites W2151023586 @default.
- W2195855237 cites W2151554678 @default.
- W2195855237 cites W2152748974 @default.
- W2195855237 cites W2153039034 @default.
- W2195855237 cites W2155802132 @default.
- W2195855237 cites W2163667253 @default.
- W2195855237 cites W2167467747 @default.
- W2195855237 cites W2167883163 @default.
- W2195855237 cites W2185323257 @default.
- W2195855237 cites W2287775497 @default.
- W2195855237 cites W2365382545 @default.
- W2195855237 cites W2409437973 @default.
- W2195855237 cites W2426031434 @default.
- W2195855237 cites W248087550 @default.
- W2195855237 cites W2570764145 @default.
- W2195855237 cites W3034905139 @default.