Matches in SemOpenAlex for { <https://semopenalex.org/work/W2197251011> ?p ?o ?g. }
- W2197251011 endingPage "132" @default.
- W2197251011 startingPage "119" @default.
- W2197251011 abstract "Organic matter (OM)-hosted pores, rather than mineral-hosted pores, are considered to be the dominant contributors to total porosity and hydrocarbon storage in many organic-rich unconventional reservoirs. OM-hosted pores are thought to develop during thermal maturation as generated hydrocarbons are expelled from the kerogen, leaving behind pores. However, prediction of OM-hosted pore development is hampered by the lack of a simple relationship between thermal maturity and OM-hosted porosity, with the controls on pore distribution, size and morphology remaining poorly known. In particular, the extent to which thermally immature OM hosts primary pores and the influence that these have on subsequent organic pore development remains poorly understood. Here we employ Ar ion beam polishing and high resolution scanning electron microscopy to show that primary OM-hosted pores are common in thermally immature shales of varying ages and depositional settings, where they occur in both structured and amorphous OM. We further find, utilising a thermal maturity gradient in the Devonian-Mississippian Woodford Shale, that although OM-hosted pores are common in the least mature (< 0.4 %Ro) samples imaged they are not evident in examples that are mature (0.5–1.1 %Ro). However, OM-hosted pores similar to those observed in the least mature samples are present in gas-mature samples (⩾ 1.5 %Ro), where they are classified as secondary pores. Solvent extraction to remove bitumen from oil-mature samples results in an abundance of pores in samples where previously none were evident, which suggests that the absence of primary OM-hosted pores in untreated oil-mature samples is due to infilling of pores by generated and retained bitumen. The similar size and morphology of more complex secondary pores and primary pores is consistent with re-emergence of primary pores in gas-mature structured organic matter, following expulsion of infilling bitumen. Inheritance of pore structure is less evident in amorphous OM types, where secondary pores exhibit a distinctive spherical morphology that has previously been attributed to a gas bubble origin within bitumen. However, similar spherical pore morphologies are evident in immature amorphous OM, arguing against a maturation related origin, so that re-emergence of primary pores cannot be ruled out. Our findings are also relevant to models of hydrocarbon storage and migration. Given that bitumen filled organic pores are likely open in regards to hydrocarbon migration, the importance of organic pore networks for primary migration in the oil window may have been underestimated – well developed organic pore networks contributing to permeability and storage capacity are otherwise assumed to be a feature characteristic of gas-mature shale reservoirs." @default.
- W2197251011 created "2016-06-24" @default.
- W2197251011 creator A5027925032 @default.
- W2197251011 creator A5033931999 @default.
- W2197251011 creator A5066324594 @default.
- W2197251011 creator A5089879286 @default.
- W2197251011 date "2015-10-01" @default.
- W2197251011 modified "2023-10-15" @default.
- W2197251011 title "Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?" @default.
- W2197251011 cites W1935042243 @default.
- W2197251011 cites W1970825354 @default.
- W2197251011 cites W1977275561 @default.
- W2197251011 cites W1980073009 @default.
- W2197251011 cites W1982945518 @default.
- W2197251011 cites W1989112421 @default.
- W2197251011 cites W1999427507 @default.
- W2197251011 cites W2013591344 @default.
- W2197251011 cites W2024044215 @default.
- W2197251011 cites W2026186673 @default.
- W2197251011 cites W2030191756 @default.
- W2197251011 cites W2035718435 @default.
- W2197251011 cites W2042631921 @default.
- W2197251011 cites W2046616015 @default.
- W2197251011 cites W2051882304 @default.
- W2197251011 cites W2054113790 @default.
- W2197251011 cites W2066626423 @default.
- W2197251011 cites W2067026099 @default.
- W2197251011 cites W2072757327 @default.
- W2197251011 cites W2077944218 @default.
- W2197251011 cites W2107163286 @default.
- W2197251011 cites W2110830197 @default.
- W2197251011 cites W2122369452 @default.
- W2197251011 cites W2131511954 @default.
- W2197251011 cites W2134189468 @default.
- W2197251011 cites W2138419830 @default.
- W2197251011 cites W2140460370 @default.
- W2197251011 cites W2146070071 @default.
- W2197251011 cites W2153224667 @default.
- W2197251011 cites W2156608310 @default.
- W2197251011 cites W2158897778 @default.
- W2197251011 cites W2161393588 @default.
- W2197251011 cites W2166038034 @default.
- W2197251011 cites W2177738502 @default.
- W2197251011 cites W2323163069 @default.
- W2197251011 cites W2331798412 @default.
- W2197251011 cites W2334920601 @default.
- W2197251011 cites W4240514875 @default.
- W2197251011 cites W2044887816 @default.
- W2197251011 doi "https://doi.org/10.1016/j.orggeochem.2015.07.010" @default.
- W2197251011 hasPublicationYear "2015" @default.
- W2197251011 type Work @default.
- W2197251011 sameAs 2197251011 @default.
- W2197251011 citedByCount "285" @default.
- W2197251011 countsByYear W21972510112016 @default.
- W2197251011 countsByYear W21972510112017 @default.
- W2197251011 countsByYear W21972510112018 @default.
- W2197251011 countsByYear W21972510112019 @default.
- W2197251011 countsByYear W21972510112020 @default.
- W2197251011 countsByYear W21972510112021 @default.
- W2197251011 countsByYear W21972510112022 @default.
- W2197251011 countsByYear W21972510112023 @default.
- W2197251011 crossrefType "journal-article" @default.
- W2197251011 hasAuthorship W2197251011A5027925032 @default.
- W2197251011 hasAuthorship W2197251011A5033931999 @default.
- W2197251011 hasAuthorship W2197251011A5066324594 @default.
- W2197251011 hasAuthorship W2197251011A5089879286 @default.
- W2197251011 hasBestOaLocation W21972510111 @default.
- W2197251011 hasConcept C101433766 @default.
- W2197251011 hasConcept C109007969 @default.
- W2197251011 hasConcept C114793014 @default.
- W2197251011 hasConcept C126559015 @default.
- W2197251011 hasConcept C127313418 @default.
- W2197251011 hasConcept C127413603 @default.
- W2197251011 hasConcept C130452526 @default.
- W2197251011 hasConcept C138496976 @default.
- W2197251011 hasConcept C151730666 @default.
- W2197251011 hasConcept C153127940 @default.
- W2197251011 hasConcept C15744967 @default.
- W2197251011 hasConcept C178790620 @default.
- W2197251011 hasConcept C185592680 @default.
- W2197251011 hasConcept C187320778 @default.
- W2197251011 hasConcept C199289684 @default.
- W2197251011 hasConcept C2779196632 @default.
- W2197251011 hasConcept C42360764 @default.
- W2197251011 hasConcept C48743137 @default.
- W2197251011 hasConcept C56052488 @default.
- W2197251011 hasConcept C6648577 @default.
- W2197251011 hasConceptScore W2197251011C101433766 @default.
- W2197251011 hasConceptScore W2197251011C109007969 @default.
- W2197251011 hasConceptScore W2197251011C114793014 @default.
- W2197251011 hasConceptScore W2197251011C126559015 @default.
- W2197251011 hasConceptScore W2197251011C127313418 @default.
- W2197251011 hasConceptScore W2197251011C127413603 @default.
- W2197251011 hasConceptScore W2197251011C130452526 @default.
- W2197251011 hasConceptScore W2197251011C138496976 @default.
- W2197251011 hasConceptScore W2197251011C151730666 @default.
- W2197251011 hasConceptScore W2197251011C153127940 @default.
- W2197251011 hasConceptScore W2197251011C15744967 @default.