Matches in SemOpenAlex for { <https://semopenalex.org/work/W2197442815> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2197442815 abstract "The continuous linear canonical transforms (LCT) can describe a wide variety of wave field propagations through paraxial (first order) optical systems. Digital algorithms to numerically calculate the LCT are therefore important in modelling scalar wave field propagations and are also of interest for many digital signal processing applications. The continuous LCT is additive, but discretization can remove this property. In this paper we discuss three special cases of the LCT for which constraints can be identified to ensure the DLCT is additive." @default.
- W2197442815 created "2016-06-24" @default.
- W2197442815 creator A5018484313 @default.
- W2197442815 creator A5039284595 @default.
- W2197442815 creator A5075053640 @default.
- W2197442815 creator A5076456910 @default.
- W2197442815 date "2015-09-22" @default.
- W2197442815 modified "2023-09-27" @default.
- W2197442815 title "Additive discrete 1D linear canonical transform" @default.
- W2197442815 cites W1977433593 @default.
- W2197442815 cites W2025923998 @default.
- W2197442815 cites W2029037421 @default.
- W2197442815 cites W2041164545 @default.
- W2197442815 cites W2057809775 @default.
- W2197442815 cites W2075599780 @default.
- W2197442815 cites W2077250337 @default.
- W2197442815 cites W2083306584 @default.
- W2197442815 cites W2084471677 @default.
- W2197442815 cites W2116983948 @default.
- W2197442815 cites W2120662290 @default.
- W2197442815 doi "https://doi.org/10.1117/12.2188229" @default.
- W2197442815 hasPublicationYear "2015" @default.
- W2197442815 type Work @default.
- W2197442815 sameAs 2197442815 @default.
- W2197442815 citedByCount "2" @default.
- W2197442815 countsByYear W21974428152015 @default.
- W2197442815 countsByYear W21974428152016 @default.
- W2197442815 crossrefType "proceedings-article" @default.
- W2197442815 hasAuthorship W2197442815A5018484313 @default.
- W2197442815 hasAuthorship W2197442815A5039284595 @default.
- W2197442815 hasAuthorship W2197442815A5075053640 @default.
- W2197442815 hasAuthorship W2197442815A5076456910 @default.
- W2197442815 hasConcept C41008148 @default.
- W2197442815 hasConceptScore W2197442815C41008148 @default.
- W2197442815 hasLocation W21974428151 @default.
- W2197442815 hasOpenAccess W2197442815 @default.
- W2197442815 hasPrimaryLocation W21974428151 @default.
- W2197442815 hasRelatedWork W2096946506 @default.
- W2197442815 hasRelatedWork W2350741829 @default.
- W2197442815 hasRelatedWork W2358668433 @default.
- W2197442815 hasRelatedWork W2376932109 @default.
- W2197442815 hasRelatedWork W2382290278 @default.
- W2197442815 hasRelatedWork W2390279801 @default.
- W2197442815 hasRelatedWork W2748952813 @default.
- W2197442815 hasRelatedWork W2766271392 @default.
- W2197442815 hasRelatedWork W2899084033 @default.
- W2197442815 hasRelatedWork W3004735627 @default.
- W2197442815 isParatext "false" @default.
- W2197442815 isRetracted "false" @default.
- W2197442815 magId "2197442815" @default.
- W2197442815 workType "article" @default.