Matches in SemOpenAlex for { <https://semopenalex.org/work/W2199650251> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2199650251 abstract "We identify and study relevant structural parameters for the problem PerfMatch of counting perfect matchings in a given input graph $G$. These generalize the well-known tractable planar case, and they include the genus of $G$, its apex number (the minimum number of vertices whose removal renders $G$ planar), and its Hadwiger number (the size of a largest clique minor). To study these parameters, we first introduce the notion of combined matchgates, a general technique that bridges parameterized counting problems and the theory of so-called Holants and matchgates: Using combined matchgates, we can simulate certain non-existing gadgets $F$ as linear combinations of $t=O(1)$ existing gadgets. If a graph $G$ features $k$ occurrences of $F$, we can then reduce $G$ to $t^k$ graphs that feature only existing gadgets, thus enabling parameterized reductions. As applications of this technique, we simplify known $4^g n^{O(1)}$ time algorithms for PerfMatch on graphs of genus $g$. Orthogonally to this, we show #W[1]-hardness of the permanent on $k$-apex graphs, implying its #W[1]-hardness under the Hadwiger number. Additionally, we rule out $n^{o(k/log k)}$ time algorithms under the counting exponential-time hypothesis #ETH. Finally, we use combined matchgates to prove parity-W[1]-hardness of evaluating the permanent modulo $2^k$, complementing an $O(n^{4k-3})$ time algorithm by Valiant and answering an open question of Bjorklund. We also obtain a lower bound of $n^{Omega(k/log k)}$ under the parity version of the exponential-time hypothesis." @default.
- W2199650251 created "2016-06-24" @default.
- W2199650251 creator A5061295833 @default.
- W2199650251 creator A5080255734 @default.
- W2199650251 date "2015-10-01" @default.
- W2199650251 modified "2023-09-25" @default.
- W2199650251 title "Parameterizing the Permanent: Genus, Apices, Minors, Evaluation Mod 2k" @default.
- W2199650251 cites W1495415187 @default.
- W2199650251 cites W1520984708 @default.
- W2199650251 cites W1598441350 @default.
- W2199650251 cites W1653035750 @default.
- W2199650251 cites W1983207144 @default.
- W2199650251 cites W1984455600 @default.
- W2199650251 cites W1985572324 @default.
- W2199650251 cites W1995725694 @default.
- W2199650251 cites W2000217912 @default.
- W2199650251 cites W2006912660 @default.
- W2199650251 cites W2009147258 @default.
- W2199650251 cites W2021372200 @default.
- W2199650251 cites W2022124805 @default.
- W2199650251 cites W2023541349 @default.
- W2199650251 cites W2024710200 @default.
- W2199650251 cites W2035409201 @default.
- W2199650251 cites W2044105411 @default.
- W2199650251 cites W2046367433 @default.
- W2199650251 cites W2054043146 @default.
- W2199650251 cites W2057512592 @default.
- W2199650251 cites W2065813152 @default.
- W2199650251 cites W2065888137 @default.
- W2199650251 cites W2077319040 @default.
- W2199650251 cites W2092928619 @default.
- W2199650251 cites W2096511180 @default.
- W2199650251 cites W2115826669 @default.
- W2199650251 cites W2123280677 @default.
- W2199650251 cites W2130190334 @default.
- W2199650251 cites W2130481157 @default.
- W2199650251 cites W2137874581 @default.
- W2199650251 cites W2150004999 @default.
- W2199650251 cites W2154899352 @default.
- W2199650251 cites W2161611531 @default.
- W2199650251 cites W2170831059 @default.
- W2199650251 cites W2175558056 @default.
- W2199650251 cites W2216649337 @default.
- W2199650251 cites W2397172610 @default.
- W2199650251 cites W3101326198 @default.
- W2199650251 cites W95416648 @default.
- W2199650251 cites W2112624678 @default.
- W2199650251 cites W2913798276 @default.
- W2199650251 doi "https://doi.org/10.1109/focs.2015.65" @default.
- W2199650251 hasPublicationYear "2015" @default.
- W2199650251 type Work @default.
- W2199650251 sameAs 2199650251 @default.
- W2199650251 citedByCount "6" @default.
- W2199650251 countsByYear W21996502512013 @default.
- W2199650251 countsByYear W21996502512016 @default.
- W2199650251 countsByYear W21996502512018 @default.
- W2199650251 countsByYear W21996502512019 @default.
- W2199650251 countsByYear W21996502512021 @default.
- W2199650251 countsByYear W21996502512022 @default.
- W2199650251 crossrefType "proceedings-article" @default.
- W2199650251 hasAuthorship W2199650251A5061295833 @default.
- W2199650251 hasAuthorship W2199650251A5080255734 @default.
- W2199650251 hasBestOaLocation W21996502512 @default.
- W2199650251 hasConcept C154945302 @default.
- W2199650251 hasConcept C157369684 @default.
- W2199650251 hasConcept C29231244 @default.
- W2199650251 hasConcept C41008148 @default.
- W2199650251 hasConcept C86803240 @default.
- W2199650251 hasConcept C90856448 @default.
- W2199650251 hasConceptScore W2199650251C154945302 @default.
- W2199650251 hasConceptScore W2199650251C157369684 @default.
- W2199650251 hasConceptScore W2199650251C29231244 @default.
- W2199650251 hasConceptScore W2199650251C41008148 @default.
- W2199650251 hasConceptScore W2199650251C86803240 @default.
- W2199650251 hasConceptScore W2199650251C90856448 @default.
- W2199650251 hasLocation W21996502511 @default.
- W2199650251 hasLocation W21996502512 @default.
- W2199650251 hasOpenAccess W2199650251 @default.
- W2199650251 hasPrimaryLocation W21996502511 @default.
- W2199650251 hasRelatedWork W1998970406 @default.
- W2199650251 hasRelatedWork W2271516242 @default.
- W2199650251 hasRelatedWork W2482639199 @default.
- W2199650251 hasRelatedWork W2631236142 @default.
- W2199650251 hasRelatedWork W2748952813 @default.
- W2199650251 hasRelatedWork W2899084033 @default.
- W2199650251 hasRelatedWork W3013332390 @default.
- W2199650251 hasRelatedWork W4245663696 @default.
- W2199650251 hasRelatedWork W4256739477 @default.
- W2199650251 hasRelatedWork W2499388286 @default.
- W2199650251 isParatext "false" @default.
- W2199650251 isRetracted "false" @default.
- W2199650251 magId "2199650251" @default.
- W2199650251 workType "article" @default.