Matches in SemOpenAlex for { <https://semopenalex.org/work/W2199845369> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2199845369 abstract "<abstract> <bold>Abstract. </bold>Pork freshness seriously influence the nutrition, food safety and quality of life, research shows it can be reflected well by detecting the TVB-N (Volatile Base Nitrogen). But it is costly and time-consuming to measure the TVB-N of pork. As a method of machine learning, Active Leaning is well solve the deficiency of labeling samples in small-scale samples modeling. This article describes detailedly Active Leaning sampling algorithm which is used to select representative training samples to reduce the dependence of model on the measured value. In this paper, the mean of spectrum and image entropy of hyperspectral images are extracted to build model with TVB-N. For reflecting the performance of Active Leaning algorithm, there are two cases to be considered, in the first case, randomly select 135 samples from 180 samples as modeling samples at first, and the rest of 45 samples are set as testing samples, then respectively use Random, KS (Kennard and Stone ) and Active Leaning sampling algorithm to select n(n=15, 30, 45, 60, 75, 90, 105, 120, 135) training samples from modeling samples ; in the second case, respectively use Random, KS and Active Leaning sampling algorithm to select n training samples from all the samples, and the rest of samples are set as testing samples set. At last, build prediction model by LSSVM (Least Square Support Vector Machine) in two cases, and use RP (Relevance of Prediction Set) and RMSEP (Root Mean Square Error of Prediction Set) to comprehensively evaluate the performance of the model. when build model with mean of spectrum and the number of training samples is 15,in the fist case, the RP respectively are 0.43,0.51,0.59, and RMSEP respectively are 8.02,6.84,5.82 (Random sampling,KS,Active Leaning); in the second case, the RP respectively are 0.41,0.69,0.77, and RMSEP respectively are 6.40,5.45,4.79 (Random sampling,KS,Active Leaning).The results show that Active Leaning is remarkably better than the KS and Random sampling in two cases." @default.
- W2199845369 created "2016-06-24" @default.
- W2199845369 creator A5005745722 @default.
- W2199845369 creator A5011899228 @default.
- W2199845369 creator A5013919453 @default.
- W2199845369 creator A5085225370 @default.
- W2199845369 date "2014-07-16" @default.
- W2199845369 modified "2023-09-27" @default.
- W2199845369 title "Hyperspectral image detection of pork freshness based on Active Learning" @default.
- W2199845369 doi "https://doi.org/10.13031/aim.20141898508" @default.
- W2199845369 hasPublicationYear "2014" @default.
- W2199845369 type Work @default.
- W2199845369 sameAs 2199845369 @default.
- W2199845369 citedByCount "0" @default.
- W2199845369 crossrefType "proceedings-article" @default.
- W2199845369 hasAuthorship W2199845369A5005745722 @default.
- W2199845369 hasAuthorship W2199845369A5011899228 @default.
- W2199845369 hasAuthorship W2199845369A5013919453 @default.
- W2199845369 hasAuthorship W2199845369A5085225370 @default.
- W2199845369 hasConcept C105795698 @default.
- W2199845369 hasConcept C106131492 @default.
- W2199845369 hasConcept C106301342 @default.
- W2199845369 hasConcept C121332964 @default.
- W2199845369 hasConcept C12267149 @default.
- W2199845369 hasConcept C124101348 @default.
- W2199845369 hasConcept C139945424 @default.
- W2199845369 hasConcept C140779682 @default.
- W2199845369 hasConcept C153180895 @default.
- W2199845369 hasConcept C154945302 @default.
- W2199845369 hasConcept C159078339 @default.
- W2199845369 hasConcept C169258074 @default.
- W2199845369 hasConcept C177264268 @default.
- W2199845369 hasConcept C199360897 @default.
- W2199845369 hasConcept C31972630 @default.
- W2199845369 hasConcept C33923547 @default.
- W2199845369 hasConcept C41008148 @default.
- W2199845369 hasConcept C51632099 @default.
- W2199845369 hasConcept C62520636 @default.
- W2199845369 hasConceptScore W2199845369C105795698 @default.
- W2199845369 hasConceptScore W2199845369C106131492 @default.
- W2199845369 hasConceptScore W2199845369C106301342 @default.
- W2199845369 hasConceptScore W2199845369C121332964 @default.
- W2199845369 hasConceptScore W2199845369C12267149 @default.
- W2199845369 hasConceptScore W2199845369C124101348 @default.
- W2199845369 hasConceptScore W2199845369C139945424 @default.
- W2199845369 hasConceptScore W2199845369C140779682 @default.
- W2199845369 hasConceptScore W2199845369C153180895 @default.
- W2199845369 hasConceptScore W2199845369C154945302 @default.
- W2199845369 hasConceptScore W2199845369C159078339 @default.
- W2199845369 hasConceptScore W2199845369C169258074 @default.
- W2199845369 hasConceptScore W2199845369C177264268 @default.
- W2199845369 hasConceptScore W2199845369C199360897 @default.
- W2199845369 hasConceptScore W2199845369C31972630 @default.
- W2199845369 hasConceptScore W2199845369C33923547 @default.
- W2199845369 hasConceptScore W2199845369C41008148 @default.
- W2199845369 hasConceptScore W2199845369C51632099 @default.
- W2199845369 hasConceptScore W2199845369C62520636 @default.
- W2199845369 hasLocation W21998453691 @default.
- W2199845369 hasOpenAccess W2199845369 @default.
- W2199845369 hasPrimaryLocation W21998453691 @default.
- W2199845369 hasRelatedWork W1869808405 @default.
- W2199845369 hasRelatedWork W2004826645 @default.
- W2199845369 hasRelatedWork W2041590274 @default.
- W2199845369 hasRelatedWork W2051197289 @default.
- W2199845369 hasRelatedWork W2076414618 @default.
- W2199845369 hasRelatedWork W2380707792 @default.
- W2199845369 hasRelatedWork W2783789044 @default.
- W2199845369 hasRelatedWork W3173596272 @default.
- W2199845369 hasRelatedWork W3211035526 @default.
- W2199845369 hasRelatedWork W3217110323 @default.
- W2199845369 isParatext "false" @default.
- W2199845369 isRetracted "false" @default.
- W2199845369 magId "2199845369" @default.
- W2199845369 workType "article" @default.