Matches in SemOpenAlex for { <https://semopenalex.org/work/W2199949845> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2199949845 abstract "Numerical simulations of the Navier-Stokes equations are conducted to achieve a better understanding of the behavior of wakes generated by the wind turbines. The simulations are performed by combining the in-house developed code EllipSys3D with the actuator line technique.In step one of the project, a numerical study is carried out focusing on the instability onset of the trailing tip vortices shed from a 3-bladed wind turbine. To determine the critical frequency, the wake is perturbed using low-amplitude excitations located near the tip spirals. Two basic flow cases are studied; symmetric and asymmetric setups. In the symmetric setup a 120 degree flow symmetry condition is dictated due to the confining the polar computational grid to 120 degree or introducing identical excitations. In the asymmetric setup, uncorrelated excitations are imposed near the tip of the blades. Both setups are analyzed using proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). By analysing the dominant modes, it was found that in the symmetric setup the amplification of specific waves (traveling structures) traveling along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown, while by breaking the symmetry almost all the modes are involved in the tip vortex destabilization. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the mutual inductance instability has a universal growth rate equal to Π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, an analytical relationship is provided for determining the length of the stable wake. This expression shows that the stable wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.In second study, large eddy simulations of the Navier-Stokes equations are also performed to investigate the wake interaction. Previous actuator line simulations on the single model wind turbine show that the accuracy of the results is directly related to the quality of the input airfoil characteristics. Therefore, a series of experiments on a 2D wing are conducted to obtain high quality airfoil characteristics for the NREL S826 at low Reynolds numbers. The new measured data are used to compute the rotor performance. The results show that the power performance as well as the wake development behind the rotor are well-captured. There are, however, some difficulties in prediction of the thrust coefficients. The continuation of this work considers the wake interaction investigations of two turbines inline (full-wake interaction) and two turbines with spanwise offset (half wake interaction). It is demonstrated that the numerical computations are able to predict the rotor performances as well as the flow field around the model rotors, and it can be a suitable tool for investigation of the wind turbine wakes.In the last study, an evaluation of the performance and near-wake structure of an analytical vortex model is presented. The vortex model is based on the constant circulation along the blades (Joukowsky rotor) and it is able to determine the geometry of the tip vortex filament in the rotor wake, allowing the free wake expansion and changing the local tip vortex pitch. Two different wind turbines have been simulated: a wind turbine with constant circulation along the blade and the other setup with a realistic circulation distribution, to compare the outcomes of the vortex model with real operative wind turbine conditions. The vortex model is compared with the actuator line approach and the presented comparisons show that the vortex method is able to approximate the single rotor performance and qualitatively describe the flow field around the wind turbine but with a negligible computational effort. This suggests that the vortex model can be a substitute of more computationally-demanding methods like actuator line technique to study the near-wake behavior." @default.
- W2199949845 created "2016-06-24" @default.
- W2199949845 creator A5044896363 @default.
- W2199949845 creator A5082163417 @default.
- W2199949845 date "2012-01-01" @default.
- W2199949845 modified "2023-09-27" @default.
- W2199949845 title "The experimental results of the NREL S826 airfoil at low Reynolds numbers" @default.
- W2199949845 hasPublicationYear "2012" @default.
- W2199949845 type Work @default.
- W2199949845 sameAs 2199949845 @default.
- W2199949845 citedByCount "2" @default.
- W2199949845 countsByYear W21999498452017 @default.
- W2199949845 countsByYear W21999498452018 @default.
- W2199949845 crossrefType "journal-article" @default.
- W2199949845 hasAuthorship W2199949845A5044896363 @default.
- W2199949845 hasAuthorship W2199949845A5082163417 @default.
- W2199949845 hasConcept C120665830 @default.
- W2199949845 hasConcept C121130766 @default.
- W2199949845 hasConcept C121332964 @default.
- W2199949845 hasConcept C140820882 @default.
- W2199949845 hasConcept C180205008 @default.
- W2199949845 hasConcept C182748727 @default.
- W2199949845 hasConcept C196558001 @default.
- W2199949845 hasConcept C207821765 @default.
- W2199949845 hasConcept C2777032711 @default.
- W2199949845 hasConcept C48939323 @default.
- W2199949845 hasConcept C57879066 @default.
- W2199949845 hasConcept C74650414 @default.
- W2199949845 hasConceptScore W2199949845C120665830 @default.
- W2199949845 hasConceptScore W2199949845C121130766 @default.
- W2199949845 hasConceptScore W2199949845C121332964 @default.
- W2199949845 hasConceptScore W2199949845C140820882 @default.
- W2199949845 hasConceptScore W2199949845C180205008 @default.
- W2199949845 hasConceptScore W2199949845C182748727 @default.
- W2199949845 hasConceptScore W2199949845C196558001 @default.
- W2199949845 hasConceptScore W2199949845C207821765 @default.
- W2199949845 hasConceptScore W2199949845C2777032711 @default.
- W2199949845 hasConceptScore W2199949845C48939323 @default.
- W2199949845 hasConceptScore W2199949845C57879066 @default.
- W2199949845 hasConceptScore W2199949845C74650414 @default.
- W2199949845 hasLocation W21999498451 @default.
- W2199949845 hasOpenAccess W2199949845 @default.
- W2199949845 hasPrimaryLocation W21999498451 @default.
- W2199949845 hasRelatedWork W1963532842 @default.
- W2199949845 hasRelatedWork W1975397325 @default.
- W2199949845 hasRelatedWork W2018166862 @default.
- W2199949845 hasRelatedWork W2077677945 @default.
- W2199949845 hasRelatedWork W2126281439 @default.
- W2199949845 hasRelatedWork W2160375049 @default.
- W2199949845 hasRelatedWork W2294296258 @default.
- W2199949845 hasRelatedWork W2332271654 @default.
- W2199949845 hasRelatedWork W2366062188 @default.
- W2199949845 hasRelatedWork W2730776272 @default.
- W2199949845 hasRelatedWork W2805120457 @default.
- W2199949845 hasRelatedWork W2807231108 @default.
- W2199949845 hasRelatedWork W2964420222 @default.
- W2199949845 hasRelatedWork W2964444682 @default.
- W2199949845 hasRelatedWork W2981719910 @default.
- W2199949845 hasRelatedWork W3048640512 @default.
- W2199949845 hasRelatedWork W3142439268 @default.
- W2199949845 hasRelatedWork W3157864978 @default.
- W2199949845 hasRelatedWork W642646716 @default.
- W2199949845 hasRelatedWork W2187143342 @default.
- W2199949845 isParatext "false" @default.
- W2199949845 isRetracted "false" @default.
- W2199949845 magId "2199949845" @default.
- W2199949845 workType "article" @default.