Matches in SemOpenAlex for { <https://semopenalex.org/work/W2199976594> ?p ?o ?g. }
- W2199976594 endingPage "50" @default.
- W2199976594 startingPage "22" @default.
- W2199976594 abstract "In this paper, an intelligent adaptive tracking control system (IATCS) based on the mixed H2/H∞ approach under uncertain plant parameters and external disturbances for achieving high precision performance of a two-axis motion control system is proposed. The two-axis motion control system is an X–Y table driven by two permanent-magnet linear synchronous motors (PMLSMs) servo drives. The proposed control scheme incorporates a mixed H2/H∞ controller, a self-organizing recurrent fuzzy-wavelet-neural-network controller (SORFWNNC) and a robust controller. The combinations of these control methods would insure the stability, robustness, optimality, overcome the uncertainties, and performance properties of the two-axis motion control system. The SORFWNNC is used as the main tracking controller to adaptively estimate an unknown nonlinear dynamic function that includes the lumped parameter uncertainties, external disturbances, cross-coupled interference and frictional force. Moreover, the structure and the parameter learning phases of the SORFWNNC are performed concurrently and online. Furthermore, a robust controller is designed to deal with the uncertainties, including the approximation error, optimal parameter vectors and higher order terms in Taylor series. Besides, the mixed H2/H∞ controller is designed such that the quadratic cost function is minimized and the worst case effect of the unknown nonlinear dynamic function on the tracking error must be attenuated below a desired attenuation level. The mixed H2/H∞ control design has the advantage of both H2 optimal control performance and H∞ robust control performance. The sufficient conditions are developed for the adaptive mixed H2/H∞ tracking problem in terms of a pair of coupled algebraic equations instead of coupled nonlinear differential equations. The coupled algebraic equations can be solved analytically. The online adaptive control laws are derived based on Lyapunov theorem and the mixed H2/H∞ tracking performance so that the stability of the proposed IATCS can be guaranteed. Furthermore, the control algorithms are implemented in a DSP-based control computer. From the experimental results, the motions at X-axis and Y-axis are controlled separately, and the dynamic behaviors of the proposed IATCS can achieve favorable tracking performance and are robust to parameter uncertainties." @default.
- W2199976594 created "2016-06-24" @default.
- W2199976594 creator A5014815513 @default.
- W2199976594 date "2016-04-01" @default.
- W2199976594 modified "2023-10-02" @default.
- W2199976594 title "Intelligent mixed H 2 /H ∞ adaptive tracking control system design using self-organizing recurrent fuzzy-wavelet-neural-network for uncertain two-axis motion control system" @default.
- W2199976594 cites W1495711302 @default.
- W2199976594 cites W1504891015 @default.
- W2199976594 cites W1512920271 @default.
- W2199976594 cites W1526958822 @default.
- W2199976594 cites W1974050402 @default.
- W2199976594 cites W1985196033 @default.
- W2199976594 cites W1987541445 @default.
- W2199976594 cites W1990521272 @default.
- W2199976594 cites W1993282188 @default.
- W2199976594 cites W1997867294 @default.
- W2199976594 cites W1998708048 @default.
- W2199976594 cites W2001089302 @default.
- W2199976594 cites W2006188622 @default.
- W2199976594 cites W2007572738 @default.
- W2199976594 cites W2008540399 @default.
- W2199976594 cites W2008683476 @default.
- W2199976594 cites W2012860581 @default.
- W2199976594 cites W2017016234 @default.
- W2199976594 cites W2018903906 @default.
- W2199976594 cites W2019704571 @default.
- W2199976594 cites W2025919489 @default.
- W2199976594 cites W2031250215 @default.
- W2199976594 cites W2032442032 @default.
- W2199976594 cites W2032977182 @default.
- W2199976594 cites W2033047820 @default.
- W2199976594 cites W2046172449 @default.
- W2199976594 cites W2046467098 @default.
- W2199976594 cites W2055831732 @default.
- W2199976594 cites W2056873420 @default.
- W2199976594 cites W2060326595 @default.
- W2199976594 cites W2062803090 @default.
- W2199976594 cites W2068535738 @default.
- W2199976594 cites W2074515448 @default.
- W2199976594 cites W2074668712 @default.
- W2199976594 cites W2075065503 @default.
- W2199976594 cites W2087822830 @default.
- W2199976594 cites W2088576961 @default.
- W2199976594 cites W2095587018 @default.
- W2199976594 cites W2095776001 @default.
- W2199976594 cites W2097019132 @default.
- W2199976594 cites W2108081621 @default.
- W2199976594 cites W2110982202 @default.
- W2199976594 cites W2113504711 @default.
- W2199976594 cites W2115304016 @default.
- W2199976594 cites W2115424783 @default.
- W2199976594 cites W2120231182 @default.
- W2199976594 cites W2121626060 @default.
- W2199976594 cites W2122592549 @default.
- W2199976594 cites W2128036726 @default.
- W2199976594 cites W2128161194 @default.
- W2199976594 cites W2131474898 @default.
- W2199976594 cites W2141694011 @default.
- W2199976594 cites W2142679115 @default.
- W2199976594 cites W2144107783 @default.
- W2199976594 cites W2145238401 @default.
- W2199976594 cites W2147199167 @default.
- W2199976594 cites W2154197905 @default.
- W2199976594 cites W2155183862 @default.
- W2199976594 cites W2155556159 @default.
- W2199976594 cites W2156846073 @default.
- W2199976594 cites W2162352380 @default.
- W2199976594 cites W2164900977 @default.
- W2199976594 cites W2166085801 @default.
- W2199976594 cites W2167705314 @default.
- W2199976594 cites W2170262723 @default.
- W2199976594 cites W2170402425 @default.
- W2199976594 cites W2547410742 @default.
- W2199976594 cites W4231836497 @default.
- W2199976594 doi "https://doi.org/10.1016/j.asoc.2015.12.009" @default.
- W2199976594 hasPublicationYear "2016" @default.
- W2199976594 type Work @default.
- W2199976594 sameAs 2199976594 @default.
- W2199976594 citedByCount "28" @default.
- W2199976594 countsByYear W21999765942016 @default.
- W2199976594 countsByYear W21999765942017 @default.
- W2199976594 countsByYear W21999765942018 @default.
- W2199976594 countsByYear W21999765942019 @default.
- W2199976594 countsByYear W21999765942020 @default.
- W2199976594 countsByYear W21999765942021 @default.
- W2199976594 countsByYear W21999765942022 @default.
- W2199976594 countsByYear W21999765942023 @default.
- W2199976594 crossrefType "journal-article" @default.
- W2199976594 hasAuthorship W2199976594A5014815513 @default.
- W2199976594 hasConcept C104317684 @default.
- W2199976594 hasConcept C119599485 @default.
- W2199976594 hasConcept C127413603 @default.
- W2199976594 hasConcept C145565327 @default.
- W2199976594 hasConcept C154945302 @default.
- W2199976594 hasConcept C17500928 @default.
- W2199976594 hasConcept C183356978 @default.
- W2199976594 hasConcept C185592680 @default.
- W2199976594 hasConcept C203479927 @default.