Matches in SemOpenAlex for { <https://semopenalex.org/work/W2200471862> ?p ?o ?g. }
- W2200471862 endingPage "81" @default.
- W2200471862 startingPage "66" @default.
- W2200471862 abstract "Interval-valued data is most utilized to represent either the uncertainty related to a single measurement, or the variability of the information inherent to a group rather than an individual. In this paper, we focus on Kohonen self-organizing maps (SOMs) for interval-valued data, and design a new Batch SOM algorithm that optimizes an explicit objective function. This algorithm can handle, respectively, suitable City-Block, Euclidean and Hausdorff distances with the purpose to compare interval-valued data during the training of the SOM. Moreover, most often conventional batch SOM algorithms consider that all variables are equally important in the training of the SOM. However, in real situations, some variables may be more or less important or even irrelevant for this task. Thanks to a parameterized definition of the above-mentioned distances, we propose also an adaptive version of the new algorithm that tackles this problem with an additional step where a relevance weight is automatically learned for each interval-valued variable. Several examples with synthetic and real interval-valued data sets illustrate the usefulness of the two novel batch SOM algorithms." @default.
- W2200471862 created "2016-06-24" @default.
- W2200471862 creator A5039745949 @default.
- W2200471862 creator A5082924527 @default.
- W2200471862 creator A5089260466 @default.
- W2200471862 date "2016-03-01" @default.
- W2200471862 modified "2023-10-02" @default.
- W2200471862 title "Batch SOM algorithms for interval-valued data with automatic weighting of the variables" @default.
- W2200471862 cites W1486517774 @default.
- W2200471862 cites W1499131690 @default.
- W2200471862 cites W1518070647 @default.
- W2200471862 cites W1521463944 @default.
- W2200471862 cites W1598395355 @default.
- W2200471862 cites W1749032234 @default.
- W2200471862 cites W1964257178 @default.
- W2200471862 cites W1970636524 @default.
- W2200471862 cites W1987351746 @default.
- W2200471862 cites W1988519789 @default.
- W2200471862 cites W1990263288 @default.
- W2200471862 cites W1990923171 @default.
- W2200471862 cites W1997170591 @default.
- W2200471862 cites W2007961939 @default.
- W2200471862 cites W2008924602 @default.
- W2200471862 cites W2013521887 @default.
- W2200471862 cites W2025818402 @default.
- W2200471862 cites W2033900880 @default.
- W2200471862 cites W2034024435 @default.
- W2200471862 cites W2037106203 @default.
- W2200471862 cites W2037414882 @default.
- W2200471862 cites W2040579227 @default.
- W2200471862 cites W2045527658 @default.
- W2200471862 cites W2050667271 @default.
- W2200471862 cites W2051134492 @default.
- W2200471862 cites W2054050358 @default.
- W2200471862 cites W2077749453 @default.
- W2200471862 cites W2079810998 @default.
- W2200471862 cites W2093882321 @default.
- W2200471862 cites W2094909687 @default.
- W2200471862 cites W2114545146 @default.
- W2200471862 cites W2120887445 @default.
- W2200471862 cites W2123148268 @default.
- W2200471862 cites W2133330577 @default.
- W2200471862 cites W2142569723 @default.
- W2200471862 cites W2153408831 @default.
- W2200471862 cites W2160754664 @default.
- W2200471862 cites W2160822942 @default.
- W2200471862 cites W2165876633 @default.
- W2200471862 cites W4230080154 @default.
- W2200471862 cites W4235169531 @default.
- W2200471862 doi "https://doi.org/10.1016/j.neucom.2015.11.084" @default.
- W2200471862 hasPublicationYear "2016" @default.
- W2200471862 type Work @default.
- W2200471862 sameAs 2200471862 @default.
- W2200471862 citedByCount "15" @default.
- W2200471862 countsByYear W22004718622016 @default.
- W2200471862 countsByYear W22004718622017 @default.
- W2200471862 countsByYear W22004718622018 @default.
- W2200471862 countsByYear W22004718622020 @default.
- W2200471862 countsByYear W22004718622021 @default.
- W2200471862 countsByYear W22004718622022 @default.
- W2200471862 countsByYear W22004718622023 @default.
- W2200471862 crossrefType "journal-article" @default.
- W2200471862 hasAuthorship W2200471862A5039745949 @default.
- W2200471862 hasAuthorship W2200471862A5082924527 @default.
- W2200471862 hasAuthorship W2200471862A5089260466 @default.
- W2200471862 hasConcept C11413529 @default.
- W2200471862 hasConcept C114614502 @default.
- W2200471862 hasConcept C124101348 @default.
- W2200471862 hasConcept C126838900 @default.
- W2200471862 hasConcept C154945302 @default.
- W2200471862 hasConcept C183115368 @default.
- W2200471862 hasConcept C2778067643 @default.
- W2200471862 hasConcept C2780009758 @default.
- W2200471862 hasConcept C2983220686 @default.
- W2200471862 hasConcept C33923547 @default.
- W2200471862 hasConcept C41008148 @default.
- W2200471862 hasConcept C71924100 @default.
- W2200471862 hasConceptScore W2200471862C11413529 @default.
- W2200471862 hasConceptScore W2200471862C114614502 @default.
- W2200471862 hasConceptScore W2200471862C124101348 @default.
- W2200471862 hasConceptScore W2200471862C126838900 @default.
- W2200471862 hasConceptScore W2200471862C154945302 @default.
- W2200471862 hasConceptScore W2200471862C183115368 @default.
- W2200471862 hasConceptScore W2200471862C2778067643 @default.
- W2200471862 hasConceptScore W2200471862C2780009758 @default.
- W2200471862 hasConceptScore W2200471862C2983220686 @default.
- W2200471862 hasConceptScore W2200471862C33923547 @default.
- W2200471862 hasConceptScore W2200471862C41008148 @default.
- W2200471862 hasConceptScore W2200471862C71924100 @default.
- W2200471862 hasLocation W22004718621 @default.
- W2200471862 hasLocation W22004718622 @default.
- W2200471862 hasOpenAccess W2200471862 @default.
- W2200471862 hasPrimaryLocation W22004718621 @default.
- W2200471862 hasRelatedWork W1988184773 @default.
- W2200471862 hasRelatedWork W2002624688 @default.
- W2200471862 hasRelatedWork W2047510385 @default.
- W2200471862 hasRelatedWork W2057402848 @default.
- W2200471862 hasRelatedWork W2139960062 @default.