Matches in SemOpenAlex for { <https://semopenalex.org/work/W2200560475> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2200560475 abstract "In this dissertation, we examine the problem of kernel optimization for binary classification tasks where the training data are partitioned into multiple, disjoint classes. The dissertation focuses specifically on the field of speaker verification, which can be framed as a one-versus-all (OVA) decision task involving a target speaker and a set of impostor speakers. The main result of this dissertation is a new framework for optimizing generalized linear kernels of the form, k( x1, x2) = xT1 Rx2, where x1 and x2 are input feature vectors, and R is a positive semidefinite parameter matrix. Our framework is based on using first and second-order statistics from each class (i.e., speaker) in the data to construct an upper bound on classification error in a linear classifier. Minimizing this bound leads directly to a new, modified formulation of the 1-norm, soft-margin support vector machine (SVM). This modified formulation is identical to the conventional SVM developed by Vapnik, except that it implicitly prescribes a solution for the R parameter matrix in a generalized linear kernel. We refer to this new, modified SVM formulation as the adaptive, multicluster SVM (AMC-SVM). Unlike most other kernel learning techniques in the literature, the AMC-SVM uses information about clusters that reside within the given target and impostor data to obtain tighter bounds on classification error than those obtained in conventional SVM-based approaches. This use of cluster information makes the AMC-SVM particularly well-suited to tasks that involve binary classification of multiclass data---for example, the speaker verification task---where each class (i.e., speaker) can be treated as a separate cluster. In OVA training settings, we show that the AMC-SVM can, under certain conditions, be formulated to yield a single, fixed kernel function that applies universally to any choice of target speaker. Since this kernel function is linear, we can implement it by applying a single linear feature transformation to the input feature space. This feature transformation performs what we refer to as within-class covariance normalization (WCCN) on the input feature vectors. The dissertation describes a set of experiments where WCCN yields large reductions in classification error over other normalization techniques on a state-of-the-art SVM-based speaker verification system." @default.
- W2200560475 created "2016-06-24" @default.
- W2200560475 creator A5038072013 @default.
- W2200560475 creator A5050339058 @default.
- W2200560475 date "2006-01-01" @default.
- W2200560475 modified "2023-09-28" @default.
- W2200560475 title "Kernel optimization for support vector machines: application to speaker verification" @default.
- W2200560475 hasPublicationYear "2006" @default.
- W2200560475 type Work @default.
- W2200560475 sameAs 2200560475 @default.
- W2200560475 citedByCount "0" @default.
- W2200560475 crossrefType "journal-article" @default.
- W2200560475 hasAuthorship W2200560475A5038072013 @default.
- W2200560475 hasAuthorship W2200560475A5050339058 @default.
- W2200560475 hasConcept C114614502 @default.
- W2200560475 hasConcept C119857082 @default.
- W2200560475 hasConcept C122280245 @default.
- W2200560475 hasConcept C12267149 @default.
- W2200560475 hasConcept C153180895 @default.
- W2200560475 hasConcept C154945302 @default.
- W2200560475 hasConcept C33923547 @default.
- W2200560475 hasConcept C41008148 @default.
- W2200560475 hasConcept C45340560 @default.
- W2200560475 hasConcept C66905080 @default.
- W2200560475 hasConcept C74193536 @default.
- W2200560475 hasConcept C95623464 @default.
- W2200560475 hasConceptScore W2200560475C114614502 @default.
- W2200560475 hasConceptScore W2200560475C119857082 @default.
- W2200560475 hasConceptScore W2200560475C122280245 @default.
- W2200560475 hasConceptScore W2200560475C12267149 @default.
- W2200560475 hasConceptScore W2200560475C153180895 @default.
- W2200560475 hasConceptScore W2200560475C154945302 @default.
- W2200560475 hasConceptScore W2200560475C33923547 @default.
- W2200560475 hasConceptScore W2200560475C41008148 @default.
- W2200560475 hasConceptScore W2200560475C45340560 @default.
- W2200560475 hasConceptScore W2200560475C66905080 @default.
- W2200560475 hasConceptScore W2200560475C74193536 @default.
- W2200560475 hasConceptScore W2200560475C95623464 @default.
- W2200560475 hasLocation W22005604751 @default.
- W2200560475 hasOpenAccess W2200560475 @default.
- W2200560475 hasPrimaryLocation W22005604751 @default.
- W2200560475 hasRelatedWork W1965575648 @default.
- W2200560475 hasRelatedWork W1971350231 @default.
- W2200560475 hasRelatedWork W1987810722 @default.
- W2200560475 hasRelatedWork W1993482042 @default.
- W2200560475 hasRelatedWork W2033569712 @default.
- W2200560475 hasRelatedWork W2075417325 @default.
- W2200560475 hasRelatedWork W2107973353 @default.
- W2200560475 hasRelatedWork W2115349888 @default.
- W2200560475 hasRelatedWork W2127469750 @default.
- W2200560475 hasRelatedWork W2135531184 @default.
- W2200560475 hasRelatedWork W2187223191 @default.
- W2200560475 hasRelatedWork W2357773848 @default.
- W2200560475 hasRelatedWork W2365253627 @default.
- W2200560475 hasRelatedWork W2384118802 @default.
- W2200560475 hasRelatedWork W2535206775 @default.
- W2200560475 hasRelatedWork W2886379096 @default.
- W2200560475 hasRelatedWork W2890241933 @default.
- W2200560475 hasRelatedWork W2913221429 @default.
- W2200560475 hasRelatedWork W97788045 @default.
- W2200560475 hasRelatedWork W2842852346 @default.
- W2200560475 isParatext "false" @default.
- W2200560475 isRetracted "false" @default.
- W2200560475 magId "2200560475" @default.
- W2200560475 workType "article" @default.