Matches in SemOpenAlex for { <https://semopenalex.org/work/W2201004764> ?p ?o ?g. }
- W2201004764 endingPage "174" @default.
- W2201004764 startingPage "159" @default.
- W2201004764 abstract "In this paper the comparison of a proposed neural network with generalized type-2 fuzzy weights (NNGT2FW) with respect to the monolithic neural network (NN) and the neural network with interval type-2 fuzzy weights (NNIT2FW) is presented. Generalized type-2 fuzzy inference systems are used to obtain the generalized type-2 fuzzy weights and are designed by a strategy of increasing and decreasing an epsilon variable for obtaining the different sizes of the footprint of uncertainty (FOU) for the generalized membership functions. The proposed method is based on recent approaches that handle weight adaptation using type-1 and type-2 fuzzy logic. The approach is applied to the prediction of the Mackey–Glass time series, and results are shown to outperform the results produced by other neural models. Gaussian noise was applied to the test data of the Mackey–Glass time series for finding out which of the presented methods in this paper shows better performance and tolerance to noise." @default.
- W2201004764 created "2016-06-24" @default.
- W2201004764 creator A5048223855 @default.
- W2201004764 creator A5053246831 @default.
- W2201004764 creator A5076628907 @default.
- W2201004764 creator A5090320352 @default.
- W2201004764 date "2015-12-01" @default.
- W2201004764 modified "2023-10-02" @default.
- W2201004764 title "Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction" @default.
- W2201004764 cites W1577073159 @default.
- W2201004764 cites W1981144549 @default.
- W2201004764 cites W1983817189 @default.
- W2201004764 cites W1993988509 @default.
- W2201004764 cites W1994477199 @default.
- W2201004764 cites W2009680990 @default.
- W2201004764 cites W2011394117 @default.
- W2201004764 cites W2012231377 @default.
- W2201004764 cites W2013196231 @default.
- W2201004764 cites W2013738709 @default.
- W2201004764 cites W2025542264 @default.
- W2201004764 cites W2034613413 @default.
- W2201004764 cites W2039037639 @default.
- W2201004764 cites W2043382734 @default.
- W2201004764 cites W2051812123 @default.
- W2201004764 cites W2058683246 @default.
- W2201004764 cites W2062705596 @default.
- W2201004764 cites W2062897401 @default.
- W2201004764 cites W2064216068 @default.
- W2201004764 cites W2067521002 @default.
- W2201004764 cites W2070273208 @default.
- W2201004764 cites W2072506331 @default.
- W2201004764 cites W2084597926 @default.
- W2201004764 cites W2085463545 @default.
- W2201004764 cites W2090194999 @default.
- W2201004764 cites W2093578608 @default.
- W2201004764 cites W2094760805 @default.
- W2201004764 cites W2099556912 @default.
- W2201004764 cites W2104352549 @default.
- W2201004764 cites W2105234323 @default.
- W2201004764 cites W2107229865 @default.
- W2201004764 cites W2115085892 @default.
- W2201004764 cites W2132885717 @default.
- W2201004764 cites W2143760316 @default.
- W2201004764 cites W2151614844 @default.
- W2201004764 cites W2154132337 @default.
- W2201004764 cites W2161771180 @default.
- W2201004764 cites W2167311402 @default.
- W2201004764 cites W2233667863 @default.
- W2201004764 doi "https://doi.org/10.1016/j.ins.2015.07.020" @default.
- W2201004764 hasPublicationYear "2015" @default.
- W2201004764 type Work @default.
- W2201004764 sameAs 2201004764 @default.
- W2201004764 citedByCount "53" @default.
- W2201004764 countsByYear W22010047642015 @default.
- W2201004764 countsByYear W22010047642016 @default.
- W2201004764 countsByYear W22010047642017 @default.
- W2201004764 countsByYear W22010047642018 @default.
- W2201004764 countsByYear W22010047642019 @default.
- W2201004764 countsByYear W22010047642020 @default.
- W2201004764 countsByYear W22010047642021 @default.
- W2201004764 countsByYear W22010047642022 @default.
- W2201004764 countsByYear W22010047642023 @default.
- W2201004764 crossrefType "journal-article" @default.
- W2201004764 hasAuthorship W2201004764A5048223855 @default.
- W2201004764 hasAuthorship W2201004764A5053246831 @default.
- W2201004764 hasAuthorship W2201004764A5076628907 @default.
- W2201004764 hasAuthorship W2201004764A5090320352 @default.
- W2201004764 hasConcept C11413529 @default.
- W2201004764 hasConcept C115961682 @default.
- W2201004764 hasConcept C119857082 @default.
- W2201004764 hasConcept C143724316 @default.
- W2201004764 hasConcept C151406439 @default.
- W2201004764 hasConcept C151730666 @default.
- W2201004764 hasConcept C154945302 @default.
- W2201004764 hasConcept C155032097 @default.
- W2201004764 hasConcept C170260401 @default.
- W2201004764 hasConcept C186108316 @default.
- W2201004764 hasConcept C1883856 @default.
- W2201004764 hasConcept C18903297 @default.
- W2201004764 hasConcept C195975749 @default.
- W2201004764 hasConcept C2777299769 @default.
- W2201004764 hasConcept C29470771 @default.
- W2201004764 hasConcept C33923547 @default.
- W2201004764 hasConcept C41008148 @default.
- W2201004764 hasConcept C42011625 @default.
- W2201004764 hasConcept C50644808 @default.
- W2201004764 hasConcept C58166 @default.
- W2201004764 hasConcept C86803240 @default.
- W2201004764 hasConcept C99498987 @default.
- W2201004764 hasConceptScore W2201004764C11413529 @default.
- W2201004764 hasConceptScore W2201004764C115961682 @default.
- W2201004764 hasConceptScore W2201004764C119857082 @default.
- W2201004764 hasConceptScore W2201004764C143724316 @default.
- W2201004764 hasConceptScore W2201004764C151406439 @default.
- W2201004764 hasConceptScore W2201004764C151730666 @default.
- W2201004764 hasConceptScore W2201004764C154945302 @default.
- W2201004764 hasConceptScore W2201004764C155032097 @default.
- W2201004764 hasConceptScore W2201004764C170260401 @default.