Matches in SemOpenAlex for { <https://semopenalex.org/work/W2201050251> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2201050251 abstract "Over the past decade, several data mining techniques have come into use within a variety of data intensive fields. Mining transaction data to discover interesting patterns or help forecast future rare events based upon historical records is of key interest. Among the classic problems facing any supply chain is that of determining how much of a given item to keep on the shelf of a warehouse or a store, and at what level to initiate replenishment of this supply. This problem has been well examined and extensively researched. However, applying current data mining techniques to support the determination of effective inventory stock levels and economic re-order points has yet to be explored. In this paper, Naive Bayes, Bayes Network, SVM, MLP, Logistic, and J48 decision tree data mining techniques are compared with respect to their effectiveness when tasked with predicting stock shortage conditions indicated by the reduced transaction history of a bench stock inventory. These comparisons have been made using training and test data sets drawn from a set of 1.8 million transactions. Each method is applied to the same set of transaction data that spans three years of bench stock inventory activity. This set of transactions contains orders, receipts, stock outages, and stock shortages but it does not include issue transactions from the inventory. Since the time of issue or removal of the item from the inventory is not known, determining the expected demand becomes very difficult. The effectiveness of the data mining predictive capability is measured with respect to the accuracy of the prediction and the lead-time provided to the inventory planner for the given prediction. The results show similar performance among most of the data mining algorithms using “actual event” prediction evaluation criteria." @default.
- W2201050251 created "2016-06-24" @default.
- W2201050251 creator A5024683744 @default.
- W2201050251 creator A5055290377 @default.
- W2201050251 date "2005-05-04" @default.
- W2201050251 modified "2023-09-26" @default.
- W2201050251 title "Data Mining Methods In A Metrics-deprivedInventory Transactions Environment" @default.
- W2201050251 cites W1536116367 @default.
- W2201050251 cites W1599914172 @default.
- W2201050251 cites W2025072667 @default.
- W2201050251 cites W2096121981 @default.
- W2201050251 cites W2105809068 @default.
- W2201050251 cites W2121721966 @default.
- W2201050251 cites W2123504579 @default.
- W2201050251 cites W2138906630 @default.
- W2201050251 cites W2170306141 @default.
- W2201050251 cites W2966207845 @default.
- W2201050251 doi "https://doi.org/10.2495/data050511" @default.
- W2201050251 hasPublicationYear "2005" @default.
- W2201050251 type Work @default.
- W2201050251 sameAs 2201050251 @default.
- W2201050251 citedByCount "1" @default.
- W2201050251 countsByYear W22010502512021 @default.
- W2201050251 crossrefType "journal-article" @default.
- W2201050251 hasAuthorship W2201050251A5024683744 @default.
- W2201050251 hasAuthorship W2201050251A5055290377 @default.
- W2201050251 hasConcept C119857082 @default.
- W2201050251 hasConcept C12267149 @default.
- W2201050251 hasConcept C124101348 @default.
- W2201050251 hasConcept C127413603 @default.
- W2201050251 hasConcept C127722929 @default.
- W2201050251 hasConcept C138885662 @default.
- W2201050251 hasConcept C194051981 @default.
- W2201050251 hasConcept C204036174 @default.
- W2201050251 hasConcept C2778137410 @default.
- W2201050251 hasConcept C33923547 @default.
- W2201050251 hasConcept C41008148 @default.
- W2201050251 hasConcept C41895202 @default.
- W2201050251 hasConcept C42475967 @default.
- W2201050251 hasConcept C52001869 @default.
- W2201050251 hasConcept C52003472 @default.
- W2201050251 hasConcept C75949130 @default.
- W2201050251 hasConcept C77088390 @default.
- W2201050251 hasConcept C78519656 @default.
- W2201050251 hasConcept C84525736 @default.
- W2201050251 hasConceptScore W2201050251C119857082 @default.
- W2201050251 hasConceptScore W2201050251C12267149 @default.
- W2201050251 hasConceptScore W2201050251C124101348 @default.
- W2201050251 hasConceptScore W2201050251C127413603 @default.
- W2201050251 hasConceptScore W2201050251C127722929 @default.
- W2201050251 hasConceptScore W2201050251C138885662 @default.
- W2201050251 hasConceptScore W2201050251C194051981 @default.
- W2201050251 hasConceptScore W2201050251C204036174 @default.
- W2201050251 hasConceptScore W2201050251C2778137410 @default.
- W2201050251 hasConceptScore W2201050251C33923547 @default.
- W2201050251 hasConceptScore W2201050251C41008148 @default.
- W2201050251 hasConceptScore W2201050251C41895202 @default.
- W2201050251 hasConceptScore W2201050251C42475967 @default.
- W2201050251 hasConceptScore W2201050251C52001869 @default.
- W2201050251 hasConceptScore W2201050251C52003472 @default.
- W2201050251 hasConceptScore W2201050251C75949130 @default.
- W2201050251 hasConceptScore W2201050251C77088390 @default.
- W2201050251 hasConceptScore W2201050251C78519656 @default.
- W2201050251 hasConceptScore W2201050251C84525736 @default.
- W2201050251 hasLocation W22010502511 @default.
- W2201050251 hasOpenAccess W2201050251 @default.
- W2201050251 hasPrimaryLocation W22010502511 @default.
- W2201050251 hasRelatedWork W2731100488 @default.
- W2201050251 hasRelatedWork W2799402703 @default.
- W2201050251 hasRelatedWork W2888770363 @default.
- W2201050251 hasRelatedWork W2894531845 @default.
- W2201050251 hasRelatedWork W2894797955 @default.
- W2201050251 hasRelatedWork W2895124822 @default.
- W2201050251 hasRelatedWork W2904504149 @default.
- W2201050251 hasRelatedWork W2940778565 @default.
- W2201050251 hasRelatedWork W2963441400 @default.
- W2201050251 hasRelatedWork W2968576950 @default.
- W2201050251 hasRelatedWork W2971249393 @default.
- W2201050251 hasRelatedWork W3001316387 @default.
- W2201050251 hasRelatedWork W3089830354 @default.
- W2201050251 hasRelatedWork W3092451446 @default.
- W2201050251 hasRelatedWork W3112758097 @default.
- W2201050251 hasRelatedWork W3128518082 @default.
- W2201050251 hasRelatedWork W3129691717 @default.
- W2201050251 hasRelatedWork W3130139313 @default.
- W2201050251 hasRelatedWork W3157827131 @default.
- W2201050251 hasRelatedWork W3166360483 @default.
- W2201050251 hasVolume "35" @default.
- W2201050251 isParatext "false" @default.
- W2201050251 isRetracted "false" @default.
- W2201050251 magId "2201050251" @default.
- W2201050251 workType "article" @default.