Matches in SemOpenAlex for { <https://semopenalex.org/work/W2201441719> ?p ?o ?g. }
- W2201441719 endingPage "22" @default.
- W2201441719 startingPage "22" @default.
- W2201441719 abstract "Mapping cropland distribution over large areas has attracted great attention in recent years, however, traditional pixel-based classification approaches produce high uncertainty in cropland area statistics. This study proposes a new approach to map fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index (EVI) and Landsat Thematic Mapper (TM) data. The major steps include: (1) remove noise and clouds/shadows contamination using the Savizky–Gloay filter and temporal resampling algorithm based on the time series MODIS EVI data; (2) identify the best periods to extract croplands through crop phenology analysis; (3) develop a seasonal dynamic index (SDI) from the time series MODIS EVI data based on three key stages: sowing, growing, and harvest; and (4) develop a regression model to estimate cropland fraction based on the relationship between SDI and Landsat-derived fractional cropland data. The root mean squared error of 0.14 was obtained based on the analysis of randomly selected 500 sample plots. This research shows that the proposed approach is promising for rapidly mapping fractional cropland distribution in Mato Grosso, Brazil." @default.
- W2201441719 created "2016-06-24" @default.
- W2201441719 creator A5015848806 @default.
- W2201441719 creator A5063822951 @default.
- W2201441719 creator A5068946101 @default.
- W2201441719 creator A5085857516 @default.
- W2201441719 date "2015-12-30" @default.
- W2201441719 modified "2023-09-24" @default.
- W2201441719 title "Mapping Fractional Cropland Distribution in Mato Grosso, Brazil Using Time Series MODIS Enhanced Vegetation Index and Landsat Thematic Mapper Data" @default.
- W2201441719 cites W1499492593 @default.
- W2201441719 cites W1551648222 @default.
- W2201441719 cites W1838764073 @default.
- W2201441719 cites W1968191130 @default.
- W2201441719 cites W1976044762 @default.
- W2201441719 cites W1990621137 @default.
- W2201441719 cites W1993565231 @default.
- W2201441719 cites W2004421470 @default.
- W2201441719 cites W2004646423 @default.
- W2201441719 cites W2013414890 @default.
- W2201441719 cites W2015611378 @default.
- W2201441719 cites W2017393444 @default.
- W2201441719 cites W2018636632 @default.
- W2201441719 cites W2019899368 @default.
- W2201441719 cites W2023912087 @default.
- W2201441719 cites W2029342456 @default.
- W2201441719 cites W2030061234 @default.
- W2201441719 cites W2030165874 @default.
- W2201441719 cites W2032930731 @default.
- W2201441719 cites W2055248879 @default.
- W2201441719 cites W2057425761 @default.
- W2201441719 cites W2058208710 @default.
- W2201441719 cites W2062321700 @default.
- W2201441719 cites W2072305677 @default.
- W2201441719 cites W2075361594 @default.
- W2201441719 cites W2076186394 @default.
- W2201441719 cites W2077884623 @default.
- W2201441719 cites W2082199675 @default.
- W2201441719 cites W2082573650 @default.
- W2201441719 cites W2085282193 @default.
- W2201441719 cites W2086823339 @default.
- W2201441719 cites W2088133484 @default.
- W2201441719 cites W2090193178 @default.
- W2201441719 cites W2099121763 @default.
- W2201441719 cites W2108493207 @default.
- W2201441719 cites W2109606373 @default.
- W2201441719 cites W2111440878 @default.
- W2201441719 cites W2130729475 @default.
- W2201441719 cites W2131311436 @default.
- W2201441719 cites W2132164728 @default.
- W2201441719 cites W2138973222 @default.
- W2201441719 cites W2148333466 @default.
- W2201441719 cites W2157675604 @default.
- W2201441719 cites W2166917517 @default.
- W2201441719 cites W2174597041 @default.
- W2201441719 cites W2200350976 @default.
- W2201441719 cites W2315702301 @default.
- W2201441719 doi "https://doi.org/10.3390/rs8010022" @default.
- W2201441719 hasPublicationYear "2015" @default.
- W2201441719 type Work @default.
- W2201441719 sameAs 2201441719 @default.
- W2201441719 citedByCount "25" @default.
- W2201441719 countsByYear W22014417192016 @default.
- W2201441719 countsByYear W22014417192017 @default.
- W2201441719 countsByYear W22014417192018 @default.
- W2201441719 countsByYear W22014417192019 @default.
- W2201441719 countsByYear W22014417192020 @default.
- W2201441719 countsByYear W22014417192021 @default.
- W2201441719 countsByYear W22014417192022 @default.
- W2201441719 countsByYear W22014417192023 @default.
- W2201441719 crossrefType "journal-article" @default.
- W2201441719 hasAuthorship W2201441719A5015848806 @default.
- W2201441719 hasAuthorship W2201441719A5063822951 @default.
- W2201441719 hasAuthorship W2201441719A5068946101 @default.
- W2201441719 hasAuthorship W2201441719A5085857516 @default.
- W2201441719 hasBestOaLocation W22014417191 @default.
- W2201441719 hasConcept C105795698 @default.
- W2201441719 hasConcept C142724271 @default.
- W2201441719 hasConcept C151406439 @default.
- W2201441719 hasConcept C1549246 @default.
- W2201441719 hasConcept C18903297 @default.
- W2201441719 hasConcept C205649164 @default.
- W2201441719 hasConcept C25989453 @default.
- W2201441719 hasConcept C2775938548 @default.
- W2201441719 hasConcept C2776133958 @default.
- W2201441719 hasConcept C2778102629 @default.
- W2201441719 hasConcept C2780376076 @default.
- W2201441719 hasConcept C33923547 @default.
- W2201441719 hasConcept C39432304 @default.
- W2201441719 hasConcept C58640448 @default.
- W2201441719 hasConcept C62649853 @default.
- W2201441719 hasConcept C71924100 @default.
- W2201441719 hasConcept C78869512 @default.
- W2201441719 hasConcept C86803240 @default.
- W2201441719 hasConcept C93692415 @default.
- W2201441719 hasConceptScore W2201441719C105795698 @default.
- W2201441719 hasConceptScore W2201441719C142724271 @default.
- W2201441719 hasConceptScore W2201441719C151406439 @default.
- W2201441719 hasConceptScore W2201441719C1549246 @default.