Matches in SemOpenAlex for { <https://semopenalex.org/work/W2201528048> ?p ?o ?g. }
- W2201528048 endingPage "1170" @default.
- W2201528048 startingPage "1159" @default.
- W2201528048 abstract "Molecular imaging (MI) in the broader sense is the characterization and measurement of biologic processes at the cellular and molecular level to elucidate various disease processes ( 1 Allport J.R. Weissleder R. In vivo imaging of gene and cell therapies. Exp Hematol. 2001; 29: 1237-1246 Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar , 2 McDonald D.M. Choyke P.L. Imaging of angiogenesis from microscope to clinic. Nat Med. 2003; 9: 713-725 Crossref PubMed Scopus (839) Google Scholar ); however, for radiologists, MI can be considered as the evolution of clinical diagnostic imaging techniques toward a more specific characterization of disease processes and gradually toward a personalized level ( 3 Pither R. PET and the role of in vivo molecular imaging in personalized medicine. Expert Rev Mol Diagn. 2003; 3: 703-713 Crossref PubMed Scopus (28) Google Scholar ). As genetic engineering progresses, MI may also be a way of following this process in vivo for improved presymptomatic disease detection and for providing tools to follow progression of the disease or response to various therapies ( 4 Nichol C. Kim E.E. Molecular imaging and gene therapy. J Nucl Med. 2001; 42: 1368-1374 PubMed Google Scholar ). Since the inception of MI, its utility and development in clinical diagnosis and therapy monitoring has continued to evolve at a rapid pace ( 5 Frost J.J. Molecular imaging of the brain a historical perspective. Neuroimaging Clin N Am. 2003; 13: 653-658 Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar , 6 Cherry S.R. In vivo molecular and genomic imaging new challenges for imaging physics. Phys Med Biol. 2004; 49: R13-R48 Crossref PubMed Scopus (339) Google Scholar , 7 Herschman H.R. Molecular imaging looking at problems, seeing solutions. Science. 2003; 302: 605-608 Crossref PubMed Scopus (370) Google Scholar ). Just as visual observations of morphologic tissue changes on conventional clinical imaging techniques gave way to the physiological examinations of inner organs through the practice of radiology, novel MI applications will further develop the clinician’s ability to detect disease at earlier stages to more accurately follow the patient through the disease process. Exponential coefficient that describes the interaction probability of x-rays with the media they traverse. Process by which positron emitting radiations may be localized based on the simultaneous emission/detection of two 511 keV photons emitted at 180 degrees apart in an internally administered radioisotope. High attenuation grid structure that only transmits x radiation or gamma radiation from a specific direction; used to localize in a planar fashion the source of administered radioisotopes and consequently defines the intrinsic spatial resolution of nuclear medicine imaging equipment. Signal difference between two adjacent points in an imaging plane; typically used with respect to spatial resolution. Efficiency with which absorbed x or gamma radiant energy is converted to electrical signal in x-ray-based imaging systems. Image display scale value where +1000 equals air and −1000 equals dense bone; related to attenuation coefficients for biologic materials. Parameter used to characterize how well an imaging system can reflect sinusoidal varying input functions; typically presented as a range of input frequencies. An exchange of radiofrequency energy at a specific radio frequency determined by the nuclear spin of the atomic nucleus and the magnetic field in which it resides. Property of ultrasound transducer crystals that converts electrical energy to mechanical energy and vice versa. Digital imaging term meaning picture element that describes the display resolution of a given imaging system. Unstable isotope that spontaneously emits radiation to form more stable isotopic form. Ultrasound parameter that describes the energy of the impinging ultrasound wave that is reflected back to the ultrasound receiver. Nuclear magnetic resonance time constants that quantify the longitudinal magnetization return to equilibrium after perturbation by external magnetic or radiofrequency fields T1; or the return to equilibrium of the transverse magnetization T2. Parameter used to characterize an imaging system in terms of its ability to convey information; spatial resolution for the ability to resolve two adjacent structures, temporal for the ability to resolve two imaged events in adjacent points in time. The number of resonating spins per unit volume that determines the strength of the nuclear magnetic resonance signal. Mechanical wave frequency spectrum generated by ultrasound imaging and therapy equipment." @default.
- W2201528048 created "2016-06-24" @default.
- W2201528048 creator A5026647360 @default.
- W2201528048 creator A5042284554 @default.
- W2201528048 creator A5063975699 @default.
- W2201528048 date "2004-10-01" @default.
- W2201528048 modified "2023-09-24" @default.
- W2201528048 title "A primer on molecular biology for imagers" @default.
- W2201528048 cites W1553198783 @default.
- W2201528048 cites W1553330897 @default.
- W2201528048 cites W1561765654 @default.
- W2201528048 cites W1599703660 @default.
- W2201528048 cites W1963802442 @default.
- W2201528048 cites W1965058218 @default.
- W2201528048 cites W1973076309 @default.
- W2201528048 cites W1975518641 @default.
- W2201528048 cites W1985853441 @default.
- W2201528048 cites W1987535770 @default.
- W2201528048 cites W1987924718 @default.
- W2201528048 cites W1988841191 @default.
- W2201528048 cites W1990036692 @default.
- W2201528048 cites W1990837240 @default.
- W2201528048 cites W1994035325 @default.
- W2201528048 cites W1995604482 @default.
- W2201528048 cites W2002190301 @default.
- W2201528048 cites W2002718660 @default.
- W2201528048 cites W2012068566 @default.
- W2201528048 cites W2017054309 @default.
- W2201528048 cites W2020534136 @default.
- W2201528048 cites W2020597472 @default.
- W2201528048 cites W2032655004 @default.
- W2201528048 cites W2036899891 @default.
- W2201528048 cites W2038468610 @default.
- W2201528048 cites W2042939737 @default.
- W2201528048 cites W2043680485 @default.
- W2201528048 cites W2045342902 @default.
- W2201528048 cites W2051802363 @default.
- W2201528048 cites W2063484869 @default.
- W2201528048 cites W2064837375 @default.
- W2201528048 cites W2065977830 @default.
- W2201528048 cites W2069229423 @default.
- W2201528048 cites W2072476881 @default.
- W2201528048 cites W2077356095 @default.
- W2201528048 cites W2084876263 @default.
- W2201528048 cites W2089544915 @default.
- W2201528048 cites W2094006622 @default.
- W2201528048 cites W2097933838 @default.
- W2201528048 cites W2099331667 @default.
- W2201528048 cites W2101597126 @default.
- W2201528048 cites W2105091837 @default.
- W2201528048 cites W2109065474 @default.
- W2201528048 cites W2113400751 @default.
- W2201528048 cites W2115411899 @default.
- W2201528048 cites W2119507443 @default.
- W2201528048 cites W2129672554 @default.
- W2201528048 cites W2130258696 @default.
- W2201528048 cites W2135294374 @default.
- W2201528048 cites W2139409935 @default.
- W2201528048 cites W2146595692 @default.
- W2201528048 cites W2153057832 @default.
- W2201528048 cites W2158690710 @default.
- W2201528048 cites W2163557066 @default.
- W2201528048 cites W2164845223 @default.
- W2201528048 cites W2199926127 @default.
- W2201528048 cites W4253621161 @default.
- W2201528048 cites W4254860126 @default.
- W2201528048 doi "https://doi.org/10.1016/j.acra.2004.07.008" @default.
- W2201528048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15530810" @default.
- W2201528048 hasPublicationYear "2004" @default.
- W2201528048 type Work @default.
- W2201528048 sameAs 2201528048 @default.
- W2201528048 citedByCount "3" @default.
- W2201528048 countsByYear W22015280482021 @default.
- W2201528048 crossrefType "journal-article" @default.
- W2201528048 hasAuthorship W2201528048A5026647360 @default.
- W2201528048 hasAuthorship W2201528048A5042284554 @default.
- W2201528048 hasAuthorship W2201528048A5063975699 @default.
- W2201528048 hasConcept C136339569 @default.
- W2201528048 hasConcept C19527891 @default.
- W2201528048 hasConcept C207001950 @default.
- W2201528048 hasConcept C2779473830 @default.
- W2201528048 hasConcept C54355233 @default.
- W2201528048 hasConcept C55493867 @default.
- W2201528048 hasConcept C71924100 @default.
- W2201528048 hasConcept C83867959 @default.
- W2201528048 hasConcept C86803240 @default.
- W2201528048 hasConceptScore W2201528048C136339569 @default.
- W2201528048 hasConceptScore W2201528048C19527891 @default.
- W2201528048 hasConceptScore W2201528048C207001950 @default.
- W2201528048 hasConceptScore W2201528048C2779473830 @default.
- W2201528048 hasConceptScore W2201528048C54355233 @default.
- W2201528048 hasConceptScore W2201528048C55493867 @default.
- W2201528048 hasConceptScore W2201528048C71924100 @default.
- W2201528048 hasConceptScore W2201528048C83867959 @default.
- W2201528048 hasConceptScore W2201528048C86803240 @default.
- W2201528048 hasIssue "10" @default.
- W2201528048 hasLocation W22015280481 @default.
- W2201528048 hasLocation W22015280482 @default.